Skip to main content
Log in

Determination of artificial beta-emitters in sludge samples

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A method has been developed for the determination of two artificial beta emitters (55Fe and 63Ni) in sludge samples from a drinking water treatment plant (DWTP). The activities found for 55Fe and 63Ni ranged between (<15 Bq kg−1) and 162 Bq kg−1, and between (<10 Bq kg−1) and 65 Bq kg−1, respectively. Using the sludge activities is possible to estimate the activity of both radionuclides in the river water, based on the relation between the amount of sludge generated and the flow of the river water treated in the plant. Based on this estimation, it is possible avoid the use of time-consuming methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hosseini A, Brown JE, Gwynn JP, Dowdall M (2012) Review of research on impacts to biota of discharges of naturally occurring radionuclides in produced water to the marine environment. Sci Total Environ 438:325–333

    Article  CAS  Google Scholar 

  2. Persson BRR, Holm E (2011) 210Po and 210Pb in the terrestrial environment: a historical review. J Environ Radioact 102:420–429

    Article  CAS  Google Scholar 

  3. Qiao J, Hou X, Miró M, Roos P (2009) Determination of plutonium isotopes in waters and environmental solids: a review. Anal Chim Acta 652:66–84

    Article  CAS  Google Scholar 

  4. Thakur P, Mulholland GP (2012) Determination of 237Np in environmental and nuclear samples: a review of the analytical method. Appl Radiat Isot 70:1747–1778

    Article  CAS  Google Scholar 

  5. Alabdullah J, Michel H, Barci V, Féraud G, Barci-Funel G (2013) Spatial and vertical distributions of natural and anthropogenic radionuclides and cesium fractionation in sediments of the Var river and its tributaries (southeast France). J Radioanal Nucl Chem 298:25–32

    Article  CAS  Google Scholar 

  6. Eyrolle F, Radakovitch O, Raimbault P, Charmasson S, Antonelli C, Ferrand E, Aubert D, Raccasi G, Jacquet S, Gurriaran R (2012) Consequences of hydrological events on the delivery of suspended sediments and associated radionuclides from the Rhone River to the Mediterranean Sea. J Soils Sedim 12:1479–1495

    Article  CAS  Google Scholar 

  7. Nikitin AI, Kryshev II, Bashkirov NI, Valetova NK, Dunaev GE, Kabanov AI, Katrich IYu, Krutovsky AO, Nikitin VA, Petrenko GI, Polukhina AM, Selivanova GV, Shkuro VN (2012) Up-to-date concentrations of long-lived artificial radionuclides in the Tom and Ob rivers in the area influenced by discharges from Siberian chemical combine. J Environ Radioact 108:15–23

    Article  CAS  Google Scholar 

  8. Sawidis T, Bellos D, Tsikritzis L (2011) 137Cs concentrations in sediments and aquatic plants from the Pinios River, Thessalia (Central Greece). Water Air Soil Pollut 221:215–222

    Article  CAS  Google Scholar 

  9. Palomo M, Peñalver A, Aguilar C, Borrull F (2010) Radioactive evaluation of Ebro River water and sludge treated in a potable water treatment plant located in the south of Catalonia (Spain). Appl Radiat Isot 68:474–480

    Article  CAS  Google Scholar 

  10. Forkapic S, Nikolov J, Todorovic N, Mrdja D, Bikit I (2011) Tritium determination in Danube River Water in Serbia by liquid scintillation counter. World Acad Sci Eng Technol 52:520–523

    Google Scholar 

  11. Bolsunovsky AY, Bondareva LG (2003) Tritium in surface water of the Yenisei River basin. J Environ Rad 66:285–294

    Article  CAS  Google Scholar 

  12. Palomo M, Peñalver A, Aguilar C, Borrull F (2010) Presence of naturally occurring radioactive materials in sludge samples from several Spanish water treatment plants. J Hazard Mater 181:716–721

    Article  CAS  Google Scholar 

  13. Mola M, Avivar J, Nieto A et al (2014) Determination of 90Sr and 210Pb in sludge samples using a LOV-MSFIA system and liquid scintillation counting. Appl Radiat Isot 86:28–35

  14. Warwick PE, Croudace IW (2006) Isolation and quantification of 55Fe and 63Ni in reactor effluents using extraction chromatography and liquid scintillation analysis. Anal Chim Acta 567:277–285

    Article  CAS  Google Scholar 

  15. Hou X, Østergaard LF, Nielsen SP (2005) Determination of 63Ni and 55Fe in nuclear waste samples using radiochemical separation and liquid scintillation counting. Anal Chim Acta 535:297–307

    Article  CAS  Google Scholar 

  16. Gresits I, Tölgyesi S (2003) J Radioanal Nucl Chem 258:107–112

    Article  CAS  Google Scholar 

  17. Grahek Z, Milanović I, Nodilo M, Rožmarić M (2013) Sequential separation of Fe and Sr from liquid samples by using Sr resin and rapid determination of 55Fe and 89,90Sr. Appl Radiat Isot 81:42–48

  18. Grahek Z, Macefat MR (2006) Extraction chromatographic separation of iron from complex liquid samples and the determination of 55Fe. J Radioanal Nucl Chem 267:131–137

    Article  CAS  Google Scholar 

  19. Gudelis A, Druteikiene R, Luksiene B et al (2010) Assessing deposition levels of 55Fe, 60Co and 63Ni in the Ignalina NPP environment. J Environ Radioact 101:464–467

    Article  CAS  Google Scholar 

  20. Warwick E, Cundy B, Croudace W, Bains D, Dale AA (2001) The uptake of 55Fe by marine sediment, macroalgae, and biota following discharge from a nuclear power station. Environ Sci Technol 35:2171–2177

    Article  CAS  Google Scholar 

  21. Skwarzec B, Holm E, Struminska DI (2001) Radioanalytical determination of 55Fe and 63Ni in the environmental samples. Chem Anal 46:23–30

    CAS  Google Scholar 

  22. Herranz M, Idoeta R, Abelairas A, Legarda F (2012) Uncertainties in 63Ni and 55Fe determinations using liquid scintillation counting methods. Appl Radiat Isot 70:1863–1866

    Article  CAS  Google Scholar 

  23. Roje V (2011) Fast method of multi-elemental analysis of stream sediment samples by inductively coupled plasma-mass spectrometry (ICP–MS) with prior single-step microwave-assisted digestion. J Braz Chem Soc 22:532–539

    Article  CAS  Google Scholar 

  24. Chen M, Ma LQ (2001) Comparison of three aqua regia digestion methods for twenty Florida soils. Soil Sci Soc Am J 65:491–499

    Article  CAS  Google Scholar 

  25. Taddei MHT, Macacini JF, Vicente R et al (2013) Determination of 63Ni and 59Ni in spent ion-exchange resin and activated charcoal from the IEA-R1 nuclear research reactor. Appl Radiat Isot 77:50–55

    Article  CAS  Google Scholar 

  26. Geckeis H, Hentschel D, Jensen D et al (1997) Determination of 55Fe and 63Ni using semi-preparative ion chromatography: a feasibility study. Fresenius J Anal Chem 357:864–869

    Article  CAS  Google Scholar 

  27. Nieto A, Ruana J, Pujol X, Colom A, Peñalver A, Aguilar C, Borrull F (2015) Study of the radiological impact caused by the extraction of the residue of a dicalcium phosphate industrial plant. Radioprotection 50(2):135–140

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support of the Consorci d’Aigües de Tarragona (CAT), which provided the sludge samples from the DWTP of L’Ampolla (Tarragona, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Borrull.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonollosa, E., Nieto, A., Peñalver, A. et al. Determination of artificial beta-emitters in sludge samples. J Radioanal Nucl Chem 309, 1077–1085 (2016). https://doi.org/10.1007/s10967-016-4705-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4705-9

Keywords

Navigation