Skip to main content
Log in

Digital holographic microscopy for recording and analysis of 3D images of etched tracks in LR-115 SSNTD

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

An alternative method to visualize and analyze etched tracks in LR-115 detectors was developed. The method is based on digital holographic microscopy which provides three-dimensional track images. Virtual volumes of simulated tracks were generated considering the refractive index and thickness of etched detectors, and the 3D track profiles produced by the TRACK_TEST program. The developed technique can faithfully reproduce the 3D shape of simulated tracks and their geometric parameters. It was also possible to visualize the 3D shape of experimental tracks. The residual thickness of LR-115 detectors can be determined from tracks that completely perforated the active layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Illic R, Sutej T (2000) Radon monitoring devices based on etched track detectors In: Durrani SA, Illic R (eds.) Radon measurement by etched track detectors: application in radiation protection. Earth Science and the Environment World Science, pp 103–108

  2. Abd-Elzaher M (2013) Measurement of indoor radon concentration and assessment of doses in different districts of Alexandria city, Egypt. Environ Geochem Health 35:299–309

    Article  CAS  Google Scholar 

  3. Jaishi HP, Singh S, Tiwari RP, Tiwari RCh (2014) Analysis of soil radon data in earthquake precursory studies. Ann Geophys 57:S0544–S0549

    Google Scholar 

  4. Arias H, Palacios D, Sajo-Bohus L, Viloria T (2005) Alternative procedure for LR 115 chemical etching and alpha tracks counting. Radiat Meas 40:357–362

    Article  CAS  Google Scholar 

  5. Eghan MJ, Oppon OC, Nyarko KB, Buah-Bassuah PK (2011) Coherent imaging of etched fission fragments and alpha particles tracks in a CR-39 SSNTD. Afr Phys Rev 5:1–6

    Google Scholar 

  6. Nikezic D, Yu KN (2015) Theoretical feasibility study on neutron spectrometry with the polyallyldiglycol carbonate (PADC) solid-state nuclear track detector. Nucl Instrum Methods A 771:134–138

    Article  CAS  Google Scholar 

  7. Vazquez-Lopez C, Fragoso R, Golzarri JI, Espinosa G (2007) Applications of the atomic force microscopy to nuclear track methodology. Rev Mex Fis S53:52–56

    Google Scholar 

  8. Tanaka H, Sakurai Y, Suzuki M, Masunaga S, Takamiya K, Maruhashi A, Ono K (2014) Development of a simple and rapid method of precisely identifying the position of 10B atoms in tissue: an improvement in standard alpha autoradiography. J Radiat Res 55:373–380

    Article  CAS  Google Scholar 

  9. Mosier-Boss PA, Forsley LPG, Carbonnelle P, Morey MS, Tinsley JR, Hurley JP, Gordon FE (2012) Comparison of SEM and optical analysis of DT neutron tracks in CR39 detectors. Radiat Meas 47:57–66

    Article  CAS  Google Scholar 

  10. Costea C, Duliu OG, Danis A, Szobtka S (2011) SEM investigation of CR-39 and mica-muscovite solid state nuclear track detectors. Roman Rep Phys 63:86–94

    CAS  Google Scholar 

  11. Wertheim D, Gillmore G (2014) Application of confocal microscopy for surface and volume imaging of solid state nuclear track detectors. J Microsc 254:42–46

    Article  CAS  Google Scholar 

  12. Palacios F, Palacios D, Ricardo J, Palacios G, Sajo-Bohus L, Goncalves E, Valin JL, Monroy FA (2011) 3D nuclear track analysis by digital holographic microscopy. Radiat Meas 46:98–103

    Article  CAS  Google Scholar 

  13. Dörschel B, Hermsdorf D, Pieck S, Starke S, Thiele H, Weickert F (2003) Studies of SSNTDs made from LR-115 in view of their applicability in radiobiological experiments with alpha particles. Nucl Instrum Methods Phys Res B 207:154–164

    Article  Google Scholar 

  14. Da Silva AAR, Yoshimura EM (2005) Track analysis system for application in alpha particle detection with plastic detectors. Radiat Meas 39:621–625

    Article  Google Scholar 

  15. Santos NF, Iunes PJ, Paulo SR, Guedes S, Hadler JC (2010) CR-39 alpha particle spectrometry for the separation of the radon decay product 214Po from the thoron decay product 212Po. Radiat Meas 45:823–826

    Article  CAS  Google Scholar 

  16. Kodaira S, Yasuda N, Konishi T, Kitamura H, Kurano M, Kawashima H, Uchihori Y, Ogura K, Benton ER (2013) Calibration of CR-39 with atomic force microscope for the measurement of short range tracks from proton-induced target fragmentation reactions. Radiat Meas 50:232–236

    Article  CAS  Google Scholar 

  17. Nikezic D, Ho JPY, Yip CWY, Koo VSY, Yu KN (2002) Feasibility and limitation of track studies using atomic force microscopy. Nucl Instrum Methods B 197:293–300

    Article  CAS  Google Scholar 

  18. Nikezic D, Yu KN (2010) Long-term determination of air borne concentrations of unattached and attached radon progeny using stacked LR115 detector with multi-step etching. Nucl Instrum Methods Phys Res A 613:245–250

    Article  CAS  Google Scholar 

  19. Yu KN, Leung SYY, Nikezic D, Leung JKC (2008) Equilibrium factor determination using SSNTDs. Radiat Meas 43:357–363

    Article  Google Scholar 

  20. Palacios F, Palacios D, Palacios G, Goncalves E, Valin JL, Sajo-Bohus L, Ricardo J (2008) Methods of Fourier optics in digital holographic microscopy. Opt Commun 281:550–558

    Article  CAS  Google Scholar 

  21. Palacios F, Font O, Muramatsu M, Ricardo J, Palacios G, Palacios D, Valin J, Soga D, Monroy F (2011) Alternative reconstruction method and objects analysis in digital holographic microscopy. In: Naydenova I (ed) Advanced holography-metrology and imaging. InTech, Rijeka, pp 183–206. ISBN: 978-953-307-729-1

    Google Scholar 

  22. Palacios F, Goncalves E, Ricardo J, Valin J (2004) Adaptive filter to improve the performance of phase-unwrapping in digital holography. Opt Commun 238:245–251

    Article  CAS  Google Scholar 

  23. Palacios F, Palacios D, Palacios G, Goncalves E, Valin J, Sajo-Bohus L, Ricardo J (2008) Methods of Fourier optics in digital holographic microscopy. Opt Commun 281:550–558

    Article  CAS  Google Scholar 

  24. Nikezic D, Yu KN (2006) Computer program TRACK_TEST for calculating parameters and plotting profiles for etch pits in nuclear track materials. Comput Phys Commun 174:160–165

    Article  CAS  Google Scholar 

  25. Durrani SA, Green PF (1984) The effect of etching conditions on the response of LR 115. Nucl Tracks 8:21–24

    CAS  Google Scholar 

  26. Leung SYY, Nikezic D, Leung JKC, Yu KN (2007) Derivation of V function for LR 115 SSNTD from its sensitivity to 220Rn in a diffusion chamber. Appl Radiat Isot 65:313–317

    Article  CAS  Google Scholar 

  27. Leung SYY, Nikezic D, Yu KN (2007) Derivation of V function for LR 115 SSNTD from its partial sensitivity to 222Rn and its short-lived progeny. J Environ Radioact 92:55–61

    Article  CAS  Google Scholar 

  28. Reilly J (1991) Celluloid objects: their chemistry and preservation. JAIC 30:145–162

    Google Scholar 

  29. Kasarova S, Sultanova N, Petrova T, Dragostinova V, Nikolov I (2009) Refractive characteristics of thin polymer films. J Optoelectron Adv Mater 11:1440–1443

    CAS  Google Scholar 

  30. Ziegler JF, Biersack JP, Ziegler MD (2008) SRIM, the stopping and range of ions in matter: SRIM Company. http://www.srim.org/

  31. Palacios D, Sajo-Bohus L, Barros H, Greaves ED (2010) Alternative method to determine the bulk etch rate of LR-115 detectors. Rev Mex Fis 55:22–25

    Google Scholar 

  32. Chan KF, Lau BMF, Nikezic D, Tse AKW, Fong WF, Yu KN (2007) Simple preparation of thin CR-39 detectors for alpha-particle radiobiological experiments. Nucl Instrum Methods B 263:290–293

    Article  CAS  Google Scholar 

  33. Hermsdorf D (2009) Evaluation of the sensitivity function V for registration of a-particles in PADC CR-39 solid state nuclear track detector material. Radiat Meas 44:283–288

    Article  CAS  Google Scholar 

  34. Félix-Bautista R, Hernández-Hernández C, Zendejas-Leal BE, Fragoso R, Golzarri JI, Vázquez-López C, Espinosa G (2013) Evolution of etched nuclear track profiles of alpha particles in CR-39 by atomic force microscopy. Radiat Meas 50:197–200

    Article  Google Scholar 

  35. Fromm M, Awad EM, Ditlov V (2004) Many-hit model calculations for track etch rate in CR-39 SSNTD using confocal microscope data. Nucl Instrum Methods Phys Res B 226:565–574

    Article  CAS  Google Scholar 

  36. Vaginay F, Fromm M, Pusset D, Meesen G, Chambaudet A, Poffijn A (2001) 3D Confocal microscopy track analysis: a promising tool for determining CR-39 response function. Radiat Meas 34:123–127

    Article  CAS  Google Scholar 

  37. Hermsdorf D, Hunger M (2009) Determination of track etch rates from wall profiles of particle tracks etched in direct and reversed direction in PADC CR-39 SSNTDs. Radiat Meas 44:766–774

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study has been partially financed by the Brazilian Agency FAPESP (No. 2013/13238-5) and UNIFESP. EMY would like to thank the Brazilian Agency CNPq (National Council for Scientific and Technological Development) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Palacios Fernández.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palacios Fernández, D., Palacios, F., Yushimura, E.M. et al. Digital holographic microscopy for recording and analysis of 3D images of etched tracks in LR-115 SSNTD. J Radioanal Nucl Chem 307, 793–799 (2016). https://doi.org/10.1007/s10967-015-4344-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4344-6

Keywords

Navigation