Skip to main content
Log in

Separation of no-carrier-added 111In and 109Cd from α-particle induced Ag target using glass wool surface

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Alpha particle bombardment on thick silver target produced no-carrier-added (NCA) 111In and 109Cd radioisotopes in the matrix. NCA 111In and 109Cd were separated from the target matrix by solid–liquid extraction using glass wool surface. At 10−2 M HNO3 concentration, ~100 % 111In and 93 % 109Cd were adsorbed on the glass wool surface along with 16 % contamination of bulk Ag. After quantitative removal of bulk Ag from glass wool surface by de-ionized water, 111In and 109Cd were desorbed by 0.1 M HNO3. The mutual separation between 111In and 109Cd was achieved by column chromatography using Dowex 50WX-50 resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pivovarov S (2008) Adsorption of ions onto amorphous silica: ion exchange model. J Colloid Interf Sci 319:374–376

    Article  CAS  Google Scholar 

  2. Jiao L, Regalbuto JR (2008) The synthesis of highly dispersed noble and base metals on silica via strong electrostatic adsorption: I. Amorphous silica. J Catal 260:329–341

    Article  CAS  Google Scholar 

  3. Janusz W, Patkowski J, Chibowski S (2003) Competitive adsorption of Ca2+and Zn(II) ions at monodispersed SiO2/electrolyte solution interface. J Colloid Interface Sci 266:259–268

    Article  CAS  Google Scholar 

  4. D’Souza L, Jiao L, Regalbuto JR, Miller JT, Kropf AJ (2007) Preparation of silica- and carbon-supported cobalt by electrostatic adsorption of Co(III) hexaammines. J Catal 248:165–174

    Article  Google Scholar 

  5. Boffetta P, Donaldson K, Moolgavkar S, Mandel JS (2014) A systematic review of occupational exposure to synthetic vitreous fibers and mesothelioma. Crit Rev Toxicol 44:436–449

    Article  CAS  Google Scholar 

  6. Rapisarda V, Loreto C, Ledda C, Musumeci G, Bracci M, Santarelli L, Renis M, Ferrante M, Cardile V (2015) Cytotoxicity, oxidative stress and genotoxicity induced by glass fibers on human alveolar epithelial cell line A549. Toxicol In Vitro 29:551–557

    Article  CAS  Google Scholar 

  7. IUPAC Gold Book (2015) No-carrier-added. http://goldbook.iupac.org/N04174.html. Accessed 27 Apr 2015

  8. Lahiri S, Maiti M, Ghosh K (2013) Production and separation of 111In: an important radionuclide in life sciences—a mini review. J Radioanal Nucl Chem 297:309–318

    Article  CAS  Google Scholar 

  9. Yang Z, Zhu H, Lin X (2013) Synthesis and evaluation of 111In-labeled d-glucose as a potential SPECT imaging agent. J Radioanal Nucl Chem 295:1371–1375

    Article  CAS  Google Scholar 

  10. Mazanova M, Jaspr M, Dryak P (2013) Comparison of activity measurements in nuclear medicine services in the Czech Republic. J Radioanal Nucl Chem 295:1107–1111

    Article  CAS  Google Scholar 

  11. Kamath AV, Yip V, Gupta P, Boswell CA, Bumbaca D, Haughney P, Castro J, Tsai SP, Pacheco G, Ross S, Yan M, Beyer LAD, Khawli L, Shen BQ (2014) Dose dependent pharmacokinetics, tissue distribution, and anti-tumor efficacy of a humanized monoclonal antibody against DLL4 in mice. mAbs 6:1631–1637

    Article  Google Scholar 

  12. Muselaers CHJ, Boerman OC, Oosterwijk E, Langenhuijsen JF, Oyen WJG, Mulders PFA (2013) Indium-111-labeled girentuximabimmuno SPECT as a diagnostic tool in clear cell renal cell carcinoma. Eur Urol 63:1101–1106

    Article  CAS  Google Scholar 

  13. Holloway CMB, Scollard DA, Caldwell CB, Ehrlich L, Kahn HJ, Reilly RM (2013) Phase I trial of intraoperative detection of tumor margins in patients with HER2-positive carcinoma of the breast following administration of 111In-DTPA-trastuzumab Fab fragments. Nucl Med Biol 40:630–637

    Article  CAS  Google Scholar 

  14. Costantini DL, Chan C, Cai Z, Vallis KA, Reilly RM (2007) 111In-Labeled trastuzumab (Herceptin) modified with nuclear localization sequences (NLS): an auger electron-emitting radiotherapeutic agent for HER2/neu-amplified breast cancer. J Nucl Med 48:1357–1368

    Article  CAS  Google Scholar 

  15. Maiti M, Lahiri S, Tomar BS (2011) Separation of no-carrier-added 107,109Cd from proton induced silver target: classical chemistry still relevant. J Radioanal Nucl Chem 288:115–119

    Article  CAS  Google Scholar 

  16. Ghosh K, Maiti M, Lahiri S (2013) Separation of no-carrier-added 113,117mSn and 113m,114mIn from alpha particle irradiated natural cadmium target. J Radioanal Nucl Chem 295:865–870

    Article  CAS  Google Scholar 

  17. Nayak D, Lahiri S, Ramaswami A (2002) Alternative production and separation method of 111In by heavy ion activation of silver. Indian J Chem 41A:2300–2302

    CAS  Google Scholar 

  18. Maji S, Basu S, Lahiri S (2005) Alternative separation methods of no-carrier-added 111In produced by heavy ion activation of silver. Appl Radiat Isotopes 63:513–517

    Article  CAS  Google Scholar 

  19. Mukhopadhyay B, Lahiri S, Mukhopadhyay K, Ramaswami A (2003) Separation of carrier-free 111In, 116,117Te and 116,116m,117Sb from a 11B-induced silver target. J Radioanal Nucl Chem 256:307–310

    Article  CAS  Google Scholar 

  20. Thakare SV, Nair AGC, Chakrabarty S, Tomar BS (1999) Separation of carrier-free In-111 formed in the C-12 + Rh reaction. J Radioanal Nucl Chem 242(2):537–539

    Article  Google Scholar 

  21. Landini L, Osso JA Jr (2001) Simultaneous production of 57Co and 109Cd in cyclotron. J Radioanal Nucl Chem 250:429–431

    Article  CAS  Google Scholar 

  22. Long X, Peng X, He F, Liu M (1991) Production of cadmium-107 and cadmium-109 by deuteron bombardment of silver. Appl Radiat Isotopes 42:1234–1246

    Article  CAS  Google Scholar 

  23. Smith-Jones PM, Strelow FWE, Haasbroek FJ, Böhmer RG (1988) Production of carrier free 109Cd, 57Co and 54Mn from a composite cyclotron target of enriched silver-109 and Iron-56. Appl Radiat Isotopes 39:1073–1078

    Article  CAS  Google Scholar 

  24. Lahiri S, Mukhopadhyay B, Nandy M, Das NR (1997) Sequential separation by HDEHP of carrier-free 101,105,106Rh, 103,104,105,106,110,112Ag and 104,105,107,109,111Cd produced in alpha-particle activated palladium. J Radioanal Nucl Chem 224:148–155

    Article  Google Scholar 

  25. Lahiri S, Nandy M, Mukhopadhyay B (1997) Sequential separation of carrier free radioisotopes of rhodium, silver and cadmium produced in α-particle activated palladium by TOA. Appl Radiat Isotopes 48:1169–1172

    Article  CAS  Google Scholar 

  26. Maiti M, Ghosh K, Lahiri S (2013) Simultaneous production and separation of no-carrier-added 111In, 109Cd from alpha particle induced silver target. J Radioanal Nucl Chem 295:1945–1950

    Article  CAS  Google Scholar 

  27. Nortier FM, Mills SJ, Steyn GF (1991) Excitation functions for the production of 109Cd, 109In and 109Sn in proton bombardment of indium up to 200 MeV. Appl Radiat Isotopes 42:1105–1107

    Article  CAS  Google Scholar 

  28. Krasnov NN, Sevastjanov YG (1979) Production of cadmium-109 in nuclear reactors by neutron irradiation of silver. Int J Appl Radiat Isotopes 30:783–784

    Article  CAS  Google Scholar 

  29. Hermanne A, Adam-Rebeles R, Winkel PV, Tárkányi F, Takács S (2014) Production of 111In and 114mIn by proton induced reactions: an update on excitation functions, chemical separation-purification and recovery of target material. Radiochim Acta. doi:10.1515/ract-2013-2233

    Google Scholar 

  30. Gholamzadeh Z, Sadeghi M, Mirzaee M, Aref M (2011) Novel method to produce 109Cd via proton irradiation of electroplated silver on a gold-coated copper backing. Kerntechnik 76:273–276

    Article  CAS  Google Scholar 

  31. Sadeghi M, Karami H, Sarabadani P, Mirzaee M (2009) Separation of 109Cd from silver targets by nanohematite. Radiochim Acta 97:733–738

    CAS  Google Scholar 

  32. Sadeghi M, Sarabadani P, Karami H (2010) Synthesis of maghemite nano-particles and its application as radionuclidic adsorbant to purify 109Cd radionuclide. J Radioanal Nucl Chem 283:297–303

    Article  CAS  Google Scholar 

  33. Neirinckx RD (1972) Separation of cyclotron-produced cadmium-109 from the silver matrix, copper and zinc. Anal Chem Acta 58:237–239

    Article  CAS  Google Scholar 

  34. Sadeghi M, Mirzaii M, Gholamzadeh Z, Karimiab A, Novin FB (2009) Targetry and radiochemistry for no-carrier-added production of 109Cd. Radiochim Acta 97:113–116

    CAS  Google Scholar 

  35. Strelow FWE, Louw WJ, Weinhert CHSW (1968) Separation of cadmium from silver and other elements by anion exchange chromatography in hydrobromic acid and preparation of carrier-free cadmium-109 from cyclotron targets. Anal Chem 40:2021–2024

    Article  CAS  Google Scholar 

  36. Strelow FWE (1978) Improved separation of cadmium-109 from silver cyclotron targets by anion-exchange chromatography in nitric acid-hydrobromic acid mixtures. Anal Chem Acta 97:87–91

    Article  CAS  Google Scholar 

  37. Aardaneh K, Naidoo C, Steyn GF (2008) Radiochemical separation of 109Cd from a silver target. J Radioanal Nucl Chem 276:831–834

    Article  CAS  Google Scholar 

  38. Sadeghi M, Karami H, Sarabadani P, Bolourinovin F (2009) Separation of the no-carrier-added 109Cd from Ag, Cu and 65Zn by use of a precipitation and AG 1-X8 resin. J Radioanal Nucl Chem 281:619–623

    Article  CAS  Google Scholar 

  39. Ghosh K, Maiti M, Lahiri S (2013) Separation of no-carrier-added 109Cd from natural silver target using RTIL 1-butyl-3-methylimidazolium hexafluorophosphate. J Radioanal Nucl Chem 298:1049–1054

    Article  CAS  Google Scholar 

  40. Ghosh K, Maiti M, Lahiri S, Hussain VA (2014) Ionic liquid-salt based aqueous biphasic system for separation of 109Cd from silver target. J Radioanal Nucl Chem 302:925–930

    Article  CAS  Google Scholar 

  41. Mukhopadhyay B, Lahiri S (2007) Adsorption of 125Sb on alumina and titania surfaces. J Radioanal Nucl Chem 273:423–426

    Article  CAS  Google Scholar 

  42. Verweij W (2015) CHEAQS PRO: A program for calculating chemical equilibria in aquatic systems. http://home.tiscali.nl/cheaqs/index.html. Accessed 27 Apr 2015

Download references

Acknowledgments

We are thankful to cyclotron staff at VECC, Kolkata for their help and co-operation during the irradiation. We gratefully acknowledge the SINP-DAE 12 five-year plan project “Trace Ultratrace Analysis and Isotope Production (TULIP)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moumita Maiti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahiri, S., Maiti, M. & Ghosh, K. Separation of no-carrier-added 111In and 109Cd from α-particle induced Ag target using glass wool surface. J Radioanal Nucl Chem 306, 469–475 (2015). https://doi.org/10.1007/s10967-015-4174-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4174-6

Keywords

Navigation