Skip to main content
Log in

Statistical analysis for discrimination of prompt gamma ray peak induced by high energy neutron: Monte Carlo simulation study

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The purpose of this research is a statistical analysis for discrimination of prompt gamma ray peak induced by the 14.1 MeV neutron particles from spectra using Monte Carlo simulation. For the simulation, the information of 18 detector materials was used to simulate spectra by the neutron capture reaction. The discrimination of nine prompt gamma ray peaks from the simulation of each detector material was performed. We presented the several comparison indexes of energy resolution performance depending on the detector material using the simulation and statistics for the prompt gamma activation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jun I, Kim W, Smith M, Mitrofanov I, Litvak M (2011) A study of Venus surface elemental composition from 14 MeV neutron induced gamma ray spectroscopy: activation analysis. Nucl Instrum Method Phys Res A 629:140–144

    Article  CAS  Google Scholar 

  2. Zhang Y, Milbrath BD, Weber WJ, Elfman M, Whitlow HJ (2007) Radiation detector resolution over a continuous energy range. Appl Phys Lett 91:094105

    Article  Google Scholar 

  3. Balázsi C, Weber F, Kövér Z, Shen Z, Konya Z, Kasztovszky Z, Vértesy Z, Biró LP, Kiricsi I, Arato P (2006) Application of carbon nanotubes to silicon nitride matrix reinforcements. Curr Appl Phys 6:124–130

    Article  Google Scholar 

  4. Kurosawa S, Kubo H, Ueno K, Kabuki S, Iwaki S, Takahashi M, Taniue K, Higashi N, Miuchi K, Tanimori T, Kim D, Kim J (2012) Prompt gamma detection for range verification in proton therapy. Curr Appl Phys 12:364–368

    Article  Google Scholar 

  5. Eleon C, Perot B, Carasco C (2010) Preliminary Monte Carlo calculations for the UNCOSS neutron–based explosive detector. Nucl Instrum Method Phys Res A 619:234–239

    Article  CAS  Google Scholar 

  6. Min CH, Kim CH, Youn MY, Kim JW (2006) Prompt gamma measurements for locating the dose falloff region in the proton therapy. Appl Phys Lett 89:183517

    Article  Google Scholar 

  7. Park MS, Lee W, Kim JM (2010) Estimation of proton distribution by means of three-dimensional reconstruction of prompt gamma rays. Appl Phys Lett 97:153705

    Article  Google Scholar 

  8. Iguchi T, Kawarabayashi J, Watanabe K, Kenjyo H, Uritani A (2005) Development of compact Compton gamma camera for non-destructive detection and location of hidden explosives with neutron induced prompt gamma–ray imaging. IEEE Nucl Sci Symp Conf Rec 2:735–739

    Article  Google Scholar 

  9. Park JG, Kim CH, Han MC, Jung SH, Kim JB, Moon J (2013) Optimization of detection geometry for industrial SPECT by Monte Carlo simulations. J Instrum 8:C04006

    Google Scholar 

  10. Jakhar S, Rao C, Shyam A, Das B (2008) Measurement of 14 MeV neutron flux from DT neutron generator using activation analysis. IEEE Nucl Sci Symp Conf Rec 2335–2338

  11. Hu G, Wang S, Li Y, Xu L, Li P (2004) The influence of temperature gradient on energy resolution of Bi4Ge3O12 (BGO) crystal. Ceram Int 30:1665–1668

    Article  CAS  Google Scholar 

  12. Conti CC, Salinas ICP, Zylberberg H (2013) A detailed procedure to simulate an HPGe detector with MCNP5. Prog Nucl Energ 66:35–40

    Article  CAS  Google Scholar 

  13. Meng LJ, He Z (2005) Exploring the limiting timing resolution for large volume CZT detectors with waveform analysis. Nucl Instrum Method Phys Res A 550:435–445

    Article  CAS  Google Scholar 

  14. Tengblad O, Nilsson T, Nácher E, Johansson HT, Briz JA, Carmona-Gallardo M, Cruz C, Gugliermina V, Perea A, Sanchez RJ, Turrión NM, Bergström J, Blomberg E, Bülling A, Gallneby E, Hagdahl J, Jansson L, Jareteg K, Masgren R, Nordström M, Risting G, Shojaee S, Wittler H (2013) LaBr 3(Ce):LaCl3(Ce) Phoswich with pulse shape analysis for high energy gamma-ray and proton identification. Nucl Instrum Method Phys Res A 704:19–26

    Article  CAS  Google Scholar 

  15. Hull G, Genolini B, Josselin M, Matea I, Peyré J, Pouthas J, Zerguerras T (2012) Energy resolution of LaBr 3:Ce in a phoswich configuration with CsI:Na and NaI:Tl scintillator crystals. Nucl Instrum Method Phys Res A 695:350–353

    Article  CAS  Google Scholar 

  16. Watanabe S, Tanaka T, Oonuki K, Mitani T, Takeda SI, Kishishita T, Nakazawa K, Takahashi T, Kuroda Y, Onishi M (2006) Development of CdTe pixel detectors for Compton cameras. Nucl Instrum Method Phys Res A 567:150–153

    Article  CAS  Google Scholar 

  17. McClish M, Dokhale P, Christian J, Stapels C, Johnson E, Augustine F, Shah KS (2011) Performance measurements from LYSO scintillators coupled to a CMOS position sensitive SSPM detector. Nucl Instrum Method Phys Res A 652:264–267

    Article  CAS  Google Scholar 

  18. Nishimura H, Hattori K, Kabuki S, Kubo H, Miuchi K, Nagayoshi T, Okada Y, Orito R, Sekiya H, Takada A, Takeda A, Tanimori T, Ueno K (2007) Development of large area gamma-ray camera with GSO(Ce) scintillator arrays and PSPMTs. Nucl Instrum Method Phys Res A 573:115–118

    Article  CAS  Google Scholar 

  19. Rothfuss H, Byars L, Casey ME, Conti M, Eriksson L, Michel C (2007) Energy resolution and absolute detection efficiency for LSO crystals: A comparison between Monte Carlo simulation and experimental data. Nucl Instrum Method Phys Res A 580:1087–1092

    Article  CAS  Google Scholar 

  20. Bečvář F, Čížek J, Lešták L, Novotný I, Procházka I, Šebesta F (2000) A high-resolution BaF2 positron-lifetime spectrometer and experience with its long-term exploitation. Nucl Instrum Method Phys Res A 443:557–577

    Article  Google Scholar 

  21. Kapusta M, Balcerzyk M, Moszyński M, Pawelke J (1999) A high-energy resolution observed from a YAP: Ce scintillator. Nucl Instrum Method Phys Res A 421:610–613

    Article  CAS  Google Scholar 

  22. Trummer J, Auffray E, Lecoq P, Petrosyan A, Sempere-Roldan P (2005) Comparison of LuAP and LuYAP crystal properties from statistically significant batches produced with two different growth methods. Nucl Instrum Methods Phys Res A 551:339–351

    Article  CAS  Google Scholar 

  23. Yang H, Menaa N, Bronson F, Kastner M, Venkataraman R, Mueller WF (2011) Evaluation of a LiI(Eu) neutron detector with coincident double photodiode readout. Nucl Instrum Method Phys Res A 652:364–369

    Article  CAS  Google Scholar 

  24. Tada T, Hitomi K, Tanaka T, Wu Y, Kim SY, Yamazaki H, Ishii K (2011) Digital pulse processing and electronic noise analysis for improving energy resolutions in planar TlBr detectors. Nucl Instrum Method Phys Res A 638:92–95

    Article  CAS  Google Scholar 

  25. Owens A, Peacock A (2004) Compound semiconductor radiation detectors. Nucl Instrum Method Phys Res A 531:18–37

    Article  CAS  Google Scholar 

  26. He Z, Vigil RD (2002) Investigation of pixellated HgI2 γ-ray spectrometers. Nucl Instrum Methods Phys Res A 492:387–401

    Article  CAS  Google Scholar 

  27. Hakimabad HM, Panjeh H, Vejdani-Noghreiyan A (2007) Evaluation the nonlinear response function of a 3 × 3 in NaI scintillation detector for PGNAA applications. Appl Radiat Isot 65:918–926

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, Information and Communication Technologies (ICT) & Future Planning (MSIP)(Grant No.2009-00420) and the Radiation Technology Research and Development program (Grant No.2013043498), Republic of Korea.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Suk Suh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, DK., Jung, JY., Han, SM. et al. Statistical analysis for discrimination of prompt gamma ray peak induced by high energy neutron: Monte Carlo simulation study. J Radioanal Nucl Chem 303, 859–866 (2015). https://doi.org/10.1007/s10967-014-3572-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3572-5

Keywords

Navigation