Skip to main content
Log in

Optimization of operating parameters and rate of uranium bioleaching from a low-grade ore

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study the bioleaching of a low-grade uranium ore containing 480 ppm uranium has been reported. The studies involved extraction of uranium using Acidithiobacillus ferrooxidans derived from the uranium mine samples. The maximum specific growth rate (µ max) and doubling time (t d) were obtained 0.08 h−1 and 8.66 h, respectively. Parameters such as Fe2+ concentration, particle size, temperature and pH were optimized. The effect of pulp density (PD) was also studied. Maximum uranium bio-dissolution of 100 ± 5 % was achieved under the conditions of pH 2.0, 5 % PD and 35 °C in 48 h with the particles of d 80 = 100 μm. The optimum concentration of supplementary Fe2+ was dependent to the PD. This value was 0 and 10 g of FeSO4·7H2O/l at the PD of 5 and 15 %, respectively. The effects of time, pH and PD on the bioleaching process were studied using central composite design. New rate equation was improved for the uranium leaching rate. The rate of leaching is controlled with the concentrations of ferric and ferrous ions in solution. This study shows that uranium bioleaching may be an important process for the Saghand U mine at Yazd (Iran).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mishra A, Pradhan N, Kar RN, Sukla LB, Mishra BK (2009) Microbial recovery of uranium using native fungal strains. Hydrometallurgy 95(1–2):175–177

    Article  CAS  Google Scholar 

  2. Dwivedy KK, Mathur AK (1995) Bioleaching—our experience. Hydrometallurgy 38:99–109

    Article  CAS  Google Scholar 

  3. Chien DCH, Douglas PL, Herman DH, Marchbank A (1990) Modelling a uranium ore bioleaching process. Can J Chem Eng 68:427–434

    Article  CAS  Google Scholar 

  4. Hefnawy MA, El-Said M, Hussein M, Amin A (2002) Fungal leaching of uranium from its geological ores in Alloga area, west central Sinai, Egypt. Online J Biol Sci 2(5):346–350

    Article  Google Scholar 

  5. Mathur AK, Viswamohan K, Mohanty KB, Murthy VK, Seshadrinath ST (2000) Technical note: uranium extraction using biogenic ferric sulfate (a case study on quartz chlorite ore from Jaduguda, Singhbhum thrust belt (STB), Bihar, India). Miner Eng 13(5):575–579

    Article  CAS  Google Scholar 

  6. Abhilash, Pandey BD (2013) Microbially assisted leaching of uranium—a review. Miner Process Extr Metall Rev 34:81–113

  7. Abhilash, Singh S, Mehta KD, Kumar V, Pandey BD, Pandey VM (2009) Dissolution of uranium from silicate–apatite ore by Acidithiobacillus ferrooxidans. Hydrometallurgy 95(2):70–75

  8. Lee JU, Kim SM, Kim KW, Kim IS (2005) Microbial removal of uranium in uranium-bearing black shale. Chemosphere 59:147–154

  9. Bhatti TM, Vuorinen A, Lehtinen M, Tuovinen OH (1998) Dissolution of uraninite in acid solutions. J Chem Technol Biotechnol 73:259–263

    Article  CAS  Google Scholar 

  10. Garcia Junior O (1993) Bacterial leaching of uranium ore from Figueira-PR, Brazil, at laboratory and pilot scale. FEMS Microbiol Rev 11:237–242

    CAS  Google Scholar 

  11. Guay R, Silver M (1977) Ferrous iron oxidation and uranium extraction by Thiobacillus ferrooxidans. Biotechnol Bioeng XIX:727–740

    Article  Google Scholar 

  12. Abhilash, Pandey BD, Ray L (2012) Bioleaching of apatite rich low grade Indian uranium ore. Can Metall Q 51(4):390–402

  13. Choi MS, Cho KS, Kim DS, Ryu HW (2005) Bioleaching of uranium from low grade black schists by Acidithiobacillus ferrooxidans. World J Microbiol Biotechnol 21:377–380

  14. Munoz JA, Blazquez ML, Ballester A, Gonzalez F (1995) A study of the bioleaching of a Spanish uranium ore, Part III: column experiments. Hydrometallurgy 38:79–97

    Article  CAS  Google Scholar 

  15. Abhilash, Pandey BD (2013) Microbial processing of apatite rich low grade Indian uranium ore in bioreactor. Bioresour Technol 128:619–623

  16. Abhilash, Pandey BD (2013) Bioreactor leaching of uranium from a low grade Indian silicate ore. Biochem Eng J 71:111–117

  17. Donati ER, Sand W (eds) (2007) Microbial processing of metal sulfides. Springer, Dordrecht

    Google Scholar 

  18. Lazic ZR (2004) Design of experiments in chemical engineering. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  19. Sugio T, Wakabayashi M, Kanao T, Takeuchi F (2008) Isolation and characterization of Acidithiobacillus ferrooxidans strain D3-2 active in copper bioleaching from a copper mine in Chile. Biosci Biotechnol Biochem 72(4):998–1004

    Article  CAS  Google Scholar 

  20. Atlas RM (2005) Media for environmental microbiology, 2nd edn. Taylor and Francis, Boca Raton

    Google Scholar 

  21. Herrera L, Ruiz P, Aguillon JC, Fehrmann A (1989) A new spectrophotometric method for the determination of ferrous iron in the presence of ferric iron. J Chem Technol Biotechnol 44:171–181

    Article  CAS  Google Scholar 

  22. Karamanev DG, Nikolov LN, Mamatarkova V (2002) Rapid simultaneous quantitative determination of ferric and ferrous ions in drainage waters and similar solutions. Miner Eng 15(5):341–346

    Article  CAS  Google Scholar 

  23. Katoh S, Yoshida F (2009) Biochemical engineering. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  24. Rawlings DE, Johnson BD (eds) (2007) Biomining. Springer, Berlin

    Google Scholar 

  25. Andrews GF, Darroch M, Hansson T (1988) Bacterial removal of pyrite from concentrated coal slurries. Biotechnol Bioeng 32:813–820

    Article  CAS  Google Scholar 

  26. Ryu HW, Cho KS, Chang YK, Kim SD, Mori T (1995) Refinement of low-grade clay by microbial removal of sulfur and iron compounds using Thiobacillus ferrooxidans. J Ferment Bioeng 80:46–52

    Article  CAS  Google Scholar 

  27. Mills DB, Bar R, Kirwan DJ (1987) Effect of solids on oxygen transfer in agitated three-phase systems. AIChE J 33:1542–1549

    Article  CAS  Google Scholar 

  28. Munoz JA, Gonzalez F, Ballester A, Blazquez ML (1993) Bioleaching of a Spanish uranium ore. FEMS Microbiol Rev 11:109–120

    Article  CAS  Google Scholar 

  29. Olivera-Nappa A, Picioreanu C, Asenjo JA (2010) Non-homogeneous biofilm modeling applied to bioleaching processes. Biotechnol Bioeng 106(4):660–676

    Article  CAS  Google Scholar 

  30. Rashidi A, Safdari J, Roosta-Azad R, Zokaei-Kadijani S (2012) Modeling of uranium bioleaching by Acidithiobacillus ferrooxidans. Ann Nucl Energy 43:13–18

    Article  CAS  Google Scholar 

  31. Vilcaez J, Inoue C (2009) Mathematical modeling of thermophilic bioleaching of chalcopyrite. Miner Eng 22(11):951–960

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rashidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashidi, A., Roosta-Azad, R. & Safdari, S.J. Optimization of operating parameters and rate of uranium bioleaching from a low-grade ore. J Radioanal Nucl Chem 301, 341–350 (2014). https://doi.org/10.1007/s10967-014-3164-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3164-4

Keywords

Navigation