Skip to main content
Log in

Independent isomeric yield ratios of 95m,gNb in the natMo(γ, pxn) and natZr(p, xn) reactions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The independent isomeric yield ratios of 95m,gNb from the natMo(γ, pxn) reactions with bremsstrahlung end-point energies of 45, 50, 55, 60, and 70 MeV were determined by an activation and an off-line γ-ray spectrometric technique at the Pohang accelerator laboratory (PAL), Korea. The isomeric yield ratios of 95m,gNb from the natZr(p, xn) reactions were also determined in eight different proton energies within 19.4–44.7 MeV by a stacked-foil activation and an off-line γ-ray spectrometric technique using the MC-50 cyclotron of Korea Institute of Radiological and Medical Sciences (KIRAMS), Korea. The measured isomeric yield ratios of 95m,gNb from the present work and the literature data in the natMo(γ, pxn) and natZr(p, xn) reactions were compared with the similar literature data in the natMo(p, αxn) reactions. It was found that the isomeric yield ratio of 95m,gNb increases with projectile energy, which indicate the effect of excitation energy. However, at the same excitation energy, the isomeric yield ratios of 95m,gNb in the natZr(p, xn) and natMo(p, αxn) reactions are higher than those in the natMo(γ, pxn) reaction, which indicates the role of input angular momentum. The isomeric yield ratios of 95m,gNb in the natMo(γ, pxn), natZr(p, xn), and natMo(p, αxn) reactions were also calculated using computer code TALYS 1.4. The calculated isomeric yield ratios of 95m,gNb from three reactions increase with excitation energy. However, in all the three reactions, the calculated values are significantly higher than the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wagemans C (1990) The nuclear fission process. CRC, London

    Google Scholar 

  2. Vandenbosch R, Huizenga JR (1973) Nuclear fission. Academic, New York

    Google Scholar 

  3. Huizenga JR, Vandenbosch R (1960) Phys Rev 120:1305

    Article  CAS  Google Scholar 

  4. Vandenbosch R, Huizenga JR (1960) Phys Rev 120:1313

    Article  CAS  Google Scholar 

  5. Bishop CT, Huizenga JR, Hummel JP (1964) Phys Rev 135:B401

    Article  Google Scholar 

  6. Blann M (1975) Ann Rev Nucl Sci 25:123

    Article  CAS  Google Scholar 

  7. Hogan JJ (1973) J Inorg Nucl Chem 35:705

    Article  CAS  Google Scholar 

  8. Grant IS, Rathle M (1979) J Phys G 5:1741

    Article  CAS  Google Scholar 

  9. Branquinho CL, Hoffmann SMA, Newton GWA, Robinson VJ, Wang HY, Grant IS, Goodall JAB (1979) J Inorg Nucl Chem 41:617

    Article  CAS  Google Scholar 

  10. Auler LT, Da Silva AG, Newton GWA (1981) J Inorg Nucl Chem 43:2611

    Article  CAS  Google Scholar 

  11. Newton GWA, Robinson VJ, Shaw EM (1981) J Inorg Nucl Chem 43:2227

    Article  CAS  Google Scholar 

  12. Moody KJ, Hogan JJ (1986) Phys Rev C 34:899

    Article  CAS  Google Scholar 

  13. Saha SK, Guin R, Sahakundu SM (1987) J Radioanal Nucl Chem Lett 119:303

    Article  CAS  Google Scholar 

  14. Qaim SM, Mushtaq A, Uhl M (1988) Phys Rev C 38:645

    Article  CAS  Google Scholar 

  15. Molla NI, Qaim SM, Uhl M (1990) Phys Rev C 42:1540

    Article  CAS  Google Scholar 

  16. Guin R, Saha SK, Satya Prakash, Uhl M (1992) Phys Rev C 46:250

    Article  CAS  Google Scholar 

  17. Chadwick MB, Oblozinsky P, Herman M, Greene NM, McKnight RD, Smith DL, Young PG, MacFarlane RE, Hale GM, Frankle SC, Kahler AC, Kawano T, Little RC, Madland DG, Moller P, Mosteller RD, Page PR, Talou P, Trellue H, White MC, Wilson WB, Arcilla R, Dunford CL, Mughabghab SF, Pritychenko B, Rochman D, Sonzogni AA, Lubitz CR, Trumbull TH, Weinman JP, Brown DA, Cullen DE, Heinrichs DP, McNabb DP, Derrien H, Dunn ME, Larson NM, Leal LC, Carlson AD, Block RC, Briggs JB, Cheng ET, Huria HC, Zerkle ML, Kozier KS, Courcelle A, Pronyaev V, van der Marck SC (2006) Nucl Data Sheets 107:2931

    Article  CAS  Google Scholar 

  18. Shibata K, Iwamoto O, Nakagawa T, Iwamoto N, Ichihara A, Kunieda S, Chiba S, Furutaka K, Otuka N, Ohasawa T, Murata T, Matunobu H, Zukeran A, Kamada S, Katakura J (2011) J Nucl Sci Technol 48:1

    Article  CAS  Google Scholar 

  19. Koning AJ, Avrigeanu M, Avrigeanu V, Batistoni P, Bauge E, Be MM, Bem P, Bernard D, Bersillon O, Bidaud A, Bouland O, Courcelle A, Dean CJ, Dos-Santos-Uzarralde P, Duchemin B, Duhamel I, Duijvestijin MC, Dupont E, Fischer U, Forest RA, Gunsing F, Haeck W, Henriksson H, Hogenbirk A, Huynh TD, Jacqmin R, Jouanne C, Keinert J, Kellett MA, Kodeli I, Kopecky J, Leeb H, Leichtle D, Leppanen J, Litaize O, Lopez Jimenez MJ, Mattes M, Menapace E, Mills RW, Morillon B, Mounier C, Nichols AL, Noguere G, Nordborg C, Nouri A, Perel RL, Pereslavtsev P, Perry RJ, Pescarini M, Pillon M, Plompen AJM, Ridikas D, Romain P, Rugama Y, Rullhusen P, de Saint Jean C, Santamarina A, Sartori E, Seidel K, Serot O, Simakov S, Sublet JCh, Tagesen S, Trkov A, van der Marck SC, Vonach H (2008) The JEFF evaluated data project. In: Proceedings of the International Conference on Nuclear Data for Science and Technology, EDP Sciences, Nice, 2007, pp 721–726

  20. China evaluated nuclear data library (2009) CENDL-3.1

  21. EXFOR database, at http://www-nds.iaea.org/exfor. Accessed 2014

  22. Kato T, Oka Y (1972) Talanta 19:515

    Article  CAS  Google Scholar 

  23. Palvano SR, Razhabov O (1999) At Energ 87:533

    Article  Google Scholar 

  24. Thiep TD, An TT, Kha T, Vinh NT, Cuong PV, Belov AG, Maslov OD (2009) Phys Part Nucl Lett 6:126

    Article  CAS  Google Scholar 

  25. Kim KS, Rahaman MDS, Lee M, Kim G, Khue PD, Van Do N, Cho M-H, Ko IS, Namkung W, Naik H, Ro TI (2011) J Radioanal Nucl Chem 287:869

    Article  CAS  Google Scholar 

  26. Davydov MG, Magera BG, Trukhov AB, Shomurodov EM (1985) Atom Energ 58:47

    CAS  Google Scholar 

  27. Davydov MG, Magera BG, Trukhov AB (1987) Atom Energ 62:236

    CAS  Google Scholar 

  28. Naik H, Goswami A, Kim GN, Kim K, Yang S-C, Sahid M, Zaman M, Lee MW, Shin S-G, Cho M-H (2014) J Radioanl Nucl Chem 299:1335

    Google Scholar 

  29. Naik H, Kim GN, Kim K, Zaman M, Sahid M, Yang S-C, Lee MW, Shin S-G, Cho M-H, Goswami A, Eur Phys J A (communicated)

  30. Tarkanyi F, Ditroi F, Hermanne, Takacs AS, Ignatyuk AV (2012) Nucl Instrum Methods B 280:45

    Article  CAS  Google Scholar 

  31. Lebeda O, Pruszynski M (2010) Appl Radiat Isot 68:2355

    Article  CAS  Google Scholar 

  32. Uddin MS, Baba M (2008) Appl Radiat Isot 66:208

    Article  CAS  Google Scholar 

  33. Uddin MS, Hagiwara M, Tarkanyi F, Ditroi F, Baba M (2004) Appl Radiat Isot 60:911

    Article  CAS  Google Scholar 

  34. Aleksandrov YuV, Astapov AA, Vasilev SK, Ivanov RB, Kolachkovski A, Misiak P, Mikhaylova MA, Novgorodov AF, Popova TI, Prikhodtseva VP (1992) In: International Conference on nuclear spectroscopy and nuclear structure, Alma-Ata, p 446

  35. Levkovskii VN, Reutov VF, Botvin KV (1990) Sov Atom Energ 69:773

    Article  Google Scholar 

  36. Koning AJ, Hilaire S and Duijvestijn MC (2005) In: Haight RC, Chadwick MB, Kawano T, Talou P (eds) Proceedings of the International Conference on nuclear data for science and technology. AIP Conf Proc No 769:1115 AIP, New York, 2005

  37. Weizsacker CF (1934) Z Phys 88:612

    Article  Google Scholar 

  38. Williams EJ (1934) Phys Rev 45:729

    Article  CAS  Google Scholar 

  39. Ziegler JF, Zeiler MD, Biersack JP (2008) SRIM-2008.04. [http://www.srim.org/]. Accessed 2013

  40. Thierens H, De Frenne D, Jacobs E, De Clercq A, D’hondt P, Deruytter AJ (1976) Phys Rev C 14:1058

    Article  CAS  Google Scholar 

  41. GEANT4 Collaboration (2003) Nucl Instrum Methods 506:250

    Article  Google Scholar 

  42. Tuli JK (2011) Nuclear wallet cards www.nndc.bnl.gov

  43. Firestone RB, Ekstrom LP (2004) in: Table of radioactive isotopes, Version 2.1 (2004) http://ie.lbl.gov/toi/index.asp

  44. Blachot J, Fiche C (1981) Ann Phys Suppl 6:3

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the staff of electron linac at Pohang Accelerator Laboratory (PAL) and the MC-50 Cyclotron Laboratory in the Korea Institute of Radiological and Medical Sciences (KIRAMS), Korea for the excellent operation and their support to carry out the experiments. This research partly was supported by the National Research Foundation of Korea (NRF) through a grant provided by the Korean Ministry of Science, ICT and Future Planning (MSIP) (NRF-2013R1A2A2A01067340) and by the Institutional Activity Program of Korea Atomic Energy Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guinyun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naik, H., Kim, G., Kim, K. et al. Independent isomeric yield ratios of 95m,gNb in the natMo(γ, pxn) and natZr(p, xn) reactions. J Radioanal Nucl Chem 300, 1121–1130 (2014). https://doi.org/10.1007/s10967-014-3045-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3045-x

Keywords

Navigation