Skip to main content
Log in

Preparation and characterization of nanosized TiO2 powder as an inorganic adsorbent for aqueous radionuclide Co(II) ions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this research TiO2 sample was synthesized by a simple sol–gel method and was characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) techniques. The XRD result indicated that the obtained product was anatase titanium dioxide with high purity, the TEM image clearly showed that the particle sizes of TiO2 nanoparticles were in the range of 30–70 nm, and the measured BET surface area of the heated TiO2 nanoparticles was 147.14 m2/g. In this work, the prepared TiO2 sample was used as a new adsorbent for the adsorption of radionuclide Co(II) ions from aqueous solutions, and the influence of pH, contact time, ionic strength and temperature in the presence or absence of humic acid/fulvic acid (HA/FA) were also investigated. The experimental results indicated that the adsorption of Co(II) ions onto TiO2 was strongly pH-dependent. Based on the surface complexation, the presence of HSs enhanced the adsorption of Co(II) ions and the influence of Co(II) adsorption onto FA–TiO2 hybrids was much stronger than that of HA–TiO2 at pH values of 2.0–9.0. Adsorption of Co(II) ions onto TiO2 powder was strongly dependent on ionic strength. The adsorption process mainly occured in the first contact time of 2 h and could be fitted by a pseudo-second-order rate model. The calculated thermodynamic data indicated that the adsorption of Co(II) ions onto TiO2 was a spontaneous process and favorable at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pathak PN, Prabhu DR, Kanekar AS, Ruikar PB, Bhattacharyya A, Mohapatra PK, Manchanda VK (2004) Ind Eng Chem Res 43:4369–4375

    Article  CAS  Google Scholar 

  2. Tan XL, Fang M, Wang XK (2010) Molecules 15:8431–8468

    Article  CAS  Google Scholar 

  3. El-Shazly EAA, Sheha RR, Someda HH (2006) J Radioanal Nucl Chem 268:255–260

    Article  CAS  Google Scholar 

  4. Chang P, Yu S, Chen T, Ren A, Chen C, Wang X (2007) J Radioanal Nucl Chem 274:153–160

    Article  CAS  Google Scholar 

  5. Hu J, Chen CL, Sheng GD, Li JX, Chen YX, Wang XK (2010) Radiochim Acta 98:421–429

    Article  CAS  Google Scholar 

  6. Wang XK, Chen CL, Zhou X, Tan XL, Hu WP (2005) Radiochim Acta 93:273–278

    Article  CAS  Google Scholar 

  7. Ren XM, Wang SW, Yang ST, Li JX (2010) J Radioanal Nucl Chem 283:253–259

    Article  CAS  Google Scholar 

  8. Lu SS, Guo ZQ, Zhang CC, Zhang SW (2011) J Radioanal Nucl Chem 287:621–628

    Article  CAS  Google Scholar 

  9. Chen CL, Wang XK, Nagatsu M (2009) Environ Sci Technol 43(7):2362–2367

    Article  CAS  Google Scholar 

  10. Shao DD, Jiang ZQ, Wang XK, Li JX, Meng YD (2009) J Phys Chem B 113(4):860–864

    Article  CAS  Google Scholar 

  11. EI-Khouly SH (2006) J Radioanal Nucl Chem 270:391–398

    Article  Google Scholar 

  12. Davila-Rangel JI, Solache-Rios M (2006) J Radioanal Nucl Chem 270:465–471

    Article  CAS  Google Scholar 

  13. Khan SA (2003) J Radioanal Nucl Chem 258:3–6

    Article  CAS  Google Scholar 

  14. Koudsi UY, Dyer A (2001) J Radioanal Nucl Chem 247:209–219

    Article  CAS  Google Scholar 

  15. Hanzel R, Rajec P (2000) J Radioanal Nucl Chem 246:607–615

    Article  CAS  Google Scholar 

  16. Wang XK, Dong WM, Dai XX, Wang AX, Du JZ (2000) Appl Radiat Isot 52:165–173

    Article  CAS  Google Scholar 

  17. Chen CL, Wang XK (2007) Appl Geochem 22:436–445

    Article  CAS  Google Scholar 

  18. Hu J, Shao DD, Chang CL, Sheng GD, Li JX, Wang XK, Nagatsu M (2010) J Phys Chem B 114:6779–6785

    Article  CAS  Google Scholar 

  19. Tan XL, Wang XK, Geckeis H, Rabung TH (2008) Environ Sci Technol 42:6532–6537

    Article  CAS  Google Scholar 

  20. Tan LQ, Jin YL, Chen J, Wu J, Cheng XC, Feng LD (2011) J Radioanal Nucl Chem 289:601–610

    Article  CAS  Google Scholar 

  21. Tan XL, Fang M, Li JX, Lu Y, Wang XK (2009) J Hazard Mater 168:458–465

    Article  CAS  Google Scholar 

  22. Jakobsson AM (1999) J Colloid Interf Sci 220:367–373

    Article  CAS  Google Scholar 

  23. Tan XL, Wang XK, Chen CL, Sun AH (2007) Appl Radiat Isot 65:375–381

    Article  CAS  Google Scholar 

  24. Tan XL, Fan QH, Wang XK, Grambow B (2009) Environ Sci Technol 43:3115–3121

    Article  CAS  Google Scholar 

  25. Gablenz S, Völtzke D, Abicht HP, Neumann-Zdralek J (1998) J Mater Sci Lett 17:537–539

    Article  CAS  Google Scholar 

  26. Tan XL, Wang XK, Geckeis H, Rabung T (2008) Environ Sci Technol 42(17):6532–6537

    Article  CAS  Google Scholar 

  27. Wang XK, Zhou X, Du JZ, Hu WP, Chen CL, Chen YX (2005) Surf Sci 600:478–483

    Article  Google Scholar 

  28. Tao ZY, Zhang J, Zhai J (1999) Anal Chim Acta 395:199–203

    Article  CAS  Google Scholar 

  29. Yüzer H, Kara M, Sabah E, Çelik MS (2008) J Hazard Mater 151:33–37

    Article  Google Scholar 

  30. Reiller P, Casanova F, Moulin V (2005) Environ Sci Technol 39:1641–1648

    Article  CAS  Google Scholar 

  31. Li XL, Chen CL, Chang PP, Yu SM, Wu WS, Wang XK (2009) Desalination 244:283–292

    Article  CAS  Google Scholar 

  32. Wang XK, Dong WM, Zhang HX, Tao ZY (2001) J Radioanal Nucl Chem 250:491–496

    Article  CAS  Google Scholar 

  33. Tan XL, Chen CL, Yu SM, Wang XK (2008) Appl Geochem 23:2767–2777

    Article  CAS  Google Scholar 

  34. Tan XL, Xu D, Chen CL, Wang XK, Hu WP (2008) Radiochim Acta 96:23–29

    Article  CAS  Google Scholar 

  35. Xu D, Tan XL, Chen CL, Wang XK (2008) J Hazard Mater 154:407–416

    Article  CAS  Google Scholar 

  36. Manohar DM, Noeline BF, Anirudhan TS (2006) Appl Clay Sci 31:194–206

    Article  CAS  Google Scholar 

  37. El-Kamash AM, El-Gammal B, El-Sayed AA (2007) J Hazard Mater 141:719–728

    Article  CAS  Google Scholar 

  38. Olgun A, Atar N (2011) Chem Eng J 167:140–147

    Article  CAS  Google Scholar 

  39. Yang ST, Zhao DL, Zhang H, Lu SS, Chen L, Yu XJ (2010) J Hazard Mater 183:632–640

    Article  CAS  Google Scholar 

  40. Smičiklas I, Dimović S, Plećaš I, Mitrić M (2006) Water Res 40:2267–2274

    Article  Google Scholar 

  41. Li JX, Hu J, Sheng GD, Zhao GX, Huang Q (2009) Colloids Surf. A 349:195–201

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (20605011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangdong Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Tan, L., Jiang, J. et al. Preparation and characterization of nanosized TiO2 powder as an inorganic adsorbent for aqueous radionuclide Co(II) ions. J Radioanal Nucl Chem 295, 1305–1312 (2013). https://doi.org/10.1007/s10967-012-2296-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2296-7

Keywords

Navigation