Skip to main content
Log in

Biosorption of radiostrontium by alginate beads: application of isotherm models and thermodynamic studies

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Radioactive strontium is one of the major radioactive contaminant and its contamination is a very serious concern. Therefore, there is a need for economic, effective, non-toxic, readily available and abundant adsorbent or biosorbent to remove strontium from solutions. In this study, biosorption of 85Sr as a surrogate for 90Sr onto alginate beads was investigated in a batch system. Alginate beads were prepared from Na-alginate via cross-linking with divalent calcium ions according to the egg box model. The effect of several parameters such as pH, initial strontium concentration, contact time, dosage of alginate beads and temperature were investigated. In order to optimize the design of biosorption system for the removal of strontium, it is important to establish the most appropriate correlation for equilibrium curves. The experimental isotherm data were described by 6 different biosorption isotherm models, namely Langmuir, Freundlich, Dubinin–Radushkevich, Temkin, Flory–Huggins and Brunauer, Emmer and Teller, with constants obtained from linear and non-linear regression methods. The thermodynamic parameters (∆H°, ∆S° and ∆G°) for strontium biosorption were also determined. The results indicate that these alginate beads have a good potential for the biosorption of strontium from solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zu Y, Shaw G (2000) Soil contamination with radionuclides and potential remediation. Chemosphere 41:121–128

    Article  Google Scholar 

  2. Missana T, Garcia-Gutierrez M, Alonso U (2008) Sorption of strontium onto illite/smectite mixed clays. Phys Chem Earth 33:156–162

    Article  Google Scholar 

  3. Jagtap VS, Sonawane VR, Pahuja DN, Rajan MGR, Rajashekharrao B, Samuel AM (2003) An effective and better strategy for reducing body burden of radiostrontium. J Radiol Prot 23:317–326

    Article  CAS  Google Scholar 

  4. Höllriegl V, Li WB, Oeh U (2006) Human biokinetics of strontium—part II: final data evaluation of intestinal absorption and urinary excretion of strontium in human subjects after stable tracer administration. Radiat Environ Biophys 45:179–185

    Article  Google Scholar 

  5. Bascetin E, Atun G (2006) Adsorption behavior of strontium on binary mineral mixtures of montmorillonite and kaolinite. Appl Radiat Isot 64:957–964

    Article  CAS  Google Scholar 

  6. Lu N, Mason CFV (2001) Sorption–desorption behavior of strontium-85 onto montmorillonite and silica colloids. Appl Geochem 16:1653–1662

    Article  CAS  Google Scholar 

  7. Mishra SP, Tiwary D (1999) Ion exchangers in radioactive waste management. Part XI. Removal of barium and strontium ions from aqueous solutions by hydrous ferric oxide. Appl Radiat Isot 51:359–366

    Article  CAS  Google Scholar 

  8. Dhara S, Sarkar S, Basu S, Chattopadhyay P (2009) Separation of the Sr-90-Y-90 pair with cerium(IV) iodotungstate cation exchanger. Appl Radiat Isot 67:530–534

    Article  CAS  Google Scholar 

  9. Wu JF, Xu QC, Bai T (2007) Adsorption behavior of some radionuclides on the Chinese weathered coal. Appl Radiat Isot 65:901–909

    Article  CAS  Google Scholar 

  10. Torres E, Mata YN, Blazquez ML, Munoz JA, Gonzalez F, Ballester A (2005) Gold and silver uptake and nanoprecipitation on calcium alginate beads. Langmuir 21:7951–7958

    Article  CAS  Google Scholar 

  11. Fundueanu G, Nastruzzi C, Carpov A, Desbrieres J, Rinaudo M (1999) Physico-chemical characterization of Ca-alginate microparticles produced with different methods. Biomaterials 20:1427–1435

    Article  CAS  Google Scholar 

  12. Davis TA, Volesky B, Mucci A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330

    Article  CAS  Google Scholar 

  13. Gok C, Aytas S (2009) Biosorption of uranium(VI) from aqueous solution using calcium alginate beads. J Hazard Mater 168:369–375

    Article  CAS  Google Scholar 

  14. Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthes V, Krimissa M (2007) Sorption isotherms: a review on physical bases, modeling and measurement. Appl Geochem 22:249–275

    Article  CAS  Google Scholar 

  15. Allen SJ, Mckay G, Porter JF (2004) Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. J Colloid Interface Sci 280:322–333

    Article  CAS  Google Scholar 

  16. Kumar KV, Sivanesan S (2007) Sorption isotherm for safranin onto rice husk: comparison of linear and non-linear methods. Dyes Pigments 72:130–133

    Article  Google Scholar 

  17. Ghiaci M, Abbaspur A, Kia R, Seyedeyn-Azad F (2004) Equilibrium isotherm studies for the sorption of benzene, toluene, and phenol onto organo-zeolites and as-synthesized MCM-41. Sep Purif Technol 40:217–229

    Article  CAS  Google Scholar 

  18. Ncibi MC (2008) Applicability of some statistical tools to predict optimum adsorption isotherm after linear and non-linear regression analysis. J Hazard Mater 153:207–212

    Article  CAS  Google Scholar 

  19. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  20. Bulut E, Ozacar M, Sengil IA (2008) Adsorption of malachite green onto bentonite: equilibrium and kinetic studies and process design. Microporous Mesoporous Mater 115:234–246

    Article  CAS  Google Scholar 

  21. Arıca MY, Bayramoglu G, Yılmaz M, Bektaş S, Genç Ö (2004) Biosorption of Hg2+, Cd2+, and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funalia trogii. J Hazard Mater 109:191–199

    Article  Google Scholar 

  22. Mørch ÝA (2008) Novel alginate microcapsules for cell therapy. Thesis for the degree of doctor, Norwegian University of Science and Technology, Norway

  23. Cole T, Bidoglio G, Soupioni M, Gorman M, Gibson N (2000) Diffusion mechanisms of multiple strontium species in clay. Geochim Cosmochim Acta 64:385–396

    Article  CAS  Google Scholar 

  24. Yavari R, Huang YD, Mostofizadeh A (2010) Sorption of strontium ions from aqueous solutions by oxidized multiwall carbon nanotubes. J Radioanal Nucl Chem 285:703–710

    Article  CAS  Google Scholar 

  25. Wang M, Xu L, Peng J, Zhai M, Li J, Wei G (2009) Adsorption and desorption of Sr(II) ions in the gels based on poly saccharide derivates. J Hazard Mater 171:820–826

    Article  CAS  Google Scholar 

  26. Chakraborty D, Maji S, Bandyopadhyay A, Basu S (2007) Biosorption of cesium-137 and strontium-90 by mucilaginous seeds of Ocimum basilicum. Bioresour Technol 98:2949–2952

    Article  CAS  Google Scholar 

  27. Chegrouche S, Mellah A, Barkat M (2009) Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies. Desalination 235:306–318

    Article  CAS  Google Scholar 

  28. Ji Y, Hu Y, Tian Q, Shao X, Li J, Safarikova M, Safarik I (2010) Biosorption of strontium ions by magnetically modified yeast cells. Sep Sci Technol 45:1499–1504

    Article  CAS  Google Scholar 

  29. Wang M, Xu L, Peng J, Zhaia M, Li J, Wei G (2009) Adsorption and desorption of Sr(II) ions in the gels based on polysaccharide derivates. J Hazard Mater 171:820–826

    Article  CAS  Google Scholar 

  30. Pan J, Zou X, Yan Y, Wang X, Guan W, Han J, Wu X (2010) An ion-imprinted polymer based on palygorskite as a sacrificial support for selective removal of strontium(II). Appl Clay Sci 50:260–265

    Article  CAS  Google Scholar 

  31. Inan S, Altas Y (2010) Adsorption of strontium from acidic waste solution by Mn–Zr mixed hydrous oxide prepared by co-precipitation. Sep Sci Technol 45:269–276

    Article  CAS  Google Scholar 

  32. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  33. Kiran B, Kaushik A (2008) Chromium binding capacity of Lyngbya putealis exopolysaccharides. Biochem Eng J 38:47–54

    Article  CAS  Google Scholar 

  34. Freundlich HMF (1906) Über die adsorption in lösungen. Z Phys Chem Leipzig 57A:385–470

    Google Scholar 

  35. Ahmaruzzaman M (2008) Adsorption of phenolic compounds on low-cost adsorbents: a review. Adv Colloid Interface Sci 143:48–67

    Article  CAS  Google Scholar 

  36. Zeldowitsch J (1934) Adsorption site energy distribution. Acta Phys Chim URSS 1:961–973

    Google Scholar 

  37. Haghseresht F, Lu G (1998) Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents. Energy Fuels 12:1100–1107

    Article  CAS  Google Scholar 

  38. Reed BE, Matsumoto MR (1993) Modelling cadmium adsorption by activated carbon using the Langmuir and Freundlich isotherm expressions. Sep Sci Technol 28:2179–2195

    Article  CAS  Google Scholar 

  39. Dubinin MM, Zaverina ED, Radushkevich LV (1947) Sorption and structure of active carbons I. Adsorption of organic vapors. Zh Fiz Khim 21:1351–1362

    CAS  Google Scholar 

  40. Tempkin MI, Pyzhev V (1940) Kinetics of ammonia synthesis on promoted iron catalyst. Acta Phys Chim USSR 12:327–356

    Google Scholar 

  41. Aharoni C, Ungarish M (1977) Kinetics of activated chemisorption. Part 2. Theoretical models. J Chem Soc Faraday Trans 73:456–464

    Article  CAS  Google Scholar 

  42. Hosseini M, Mertens SFL, Ghorbani M, Arshadi MR (2003) Asymmetrical Schiff bases as inhibitors of mild steel corrosion in sulphuric acid media. Mater Chem Phys 78:800–807

    Article  CAS  Google Scholar 

  43. Flory PJ (1942) Thermodynamics of high polymer solutions. J Chem Phys 10:51–62

    Article  CAS  Google Scholar 

  44. Huggins ML (1942) Some properties of solutions of long-chain compounds. J Phys Chem 10:151–158

    Article  Google Scholar 

  45. Bruanuer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–316

    Article  Google Scholar 

Download references

Acknowledgments

Cem Gök would like to acknowledge The Scientific and Technological Research Council of Turkey (TUBITAK) and Ege University OYP for providing necessary fellowships and Helmholtz-Zentrum München, German Research Center for Environmental Health, Institute of Radiation Protection for providing to facility the work presented in this paper. The authors are also grateful to J. Tschiersch, K. Leopold and all members of HMGU-ISS Workgroup Radioecology. The authors also express their sincere gratitude to Prof. Dr. Turgay Karali for his help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cem Gok.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gok, C., Gerstmann, U. & Aytas, S. Biosorption of radiostrontium by alginate beads: application of isotherm models and thermodynamic studies. J Radioanal Nucl Chem 295, 777–788 (2013). https://doi.org/10.1007/s10967-012-1838-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-1838-3

Keywords

Navigation