Skip to main content
Log in

Study of the speciation of carbon-14 in the primary circuit of pressurized-water reactors

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The work presented in this article relates to the chemical speciation of carbon-14 in the primary circuit of pressurized-water reactors (PWR). The thermodynamic diagrams for carbon under the operating conditions of the primary circuit of PWR were plotted using the CHNOSZ thermochemical code which uses the Hegelson–Kikham–Flowers (HKF) thermodynamic model. The obtained results were compared to the published data. In an operating PWR with the redox potential imposed in the primary fluid by the pair H2/H2O, methane appears to be the predominant form that should be present in the primary circuit. When the reactor is shut down (low temperature, oxidizing medium), the inorganic forms of carbon (carbonate, hydrogen carbonate) predominate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. UNSCEAR (2000) Sources and effect of ionizing radiation. Report volume I. http://www.unscear.org/unscear/en/publications/2000_1.html. Accessed 17 Jan 2012

  2. Yim MS, Caron F (2006) Life cycle and management of carbon-14 from nuclear power generation. Prog Nucl Energy 48:2–36

    Article  CAS  Google Scholar 

  3. EPRI (1983) Computer calculated potential-pH diagrams to 300 °C. Technical Report NP 3137 Project 1167

  4. Rosset R, Desbarres J, Noel D (1994) Redox properties of carbon-14 and iodine-129 in relation of radioactive waste storage. Proc Int Conf Nice 1:144–147

    CAS  Google Scholar 

  5. Criss CM, Cobble JW (1964) The thermodynamic properties of high temperature aqueous solutions. J Am Chem Soc 86(24):5390–9385

    Article  CAS  Google Scholar 

  6. Majer V, Seldbauer J, Wood RH (2004). In: Palmer DA, Fernandez-Prini R, Harvey AH (eds) Aqueous systems at elevated temperatures and pressures. Elsevier, Oxford. ISBN 0-12-544461-3

  7. Helgeson HC, Kirkham DH, Flowers GC (1981) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 °C and 5 Kbar. Am J Sci 281:1249–1516

    Article  CAS  Google Scholar 

  8. Shock EL, Helgesson HC (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: correlation algorithms for ionic species and equation of state predictions to 5 Kbar and 1,000 °C. Geochim Cosmochim Acta 52:2009–2036

    Article  CAS  Google Scholar 

  9. Tanger JC, Helgesson HC (1988) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: revised equations of state for the standard partial molal properties of ions and electrolytes. Am J Sci 288:19–98

    Article  CAS  Google Scholar 

  10. http://www.chnosz.net/. Accessed 17 Jan 2012

  11. R Development Core Team (2009). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org

  12. Magnusson A (2007) Carbon-14 produced by nuclear power reactors—generation and characterization of gaseous, solid and liquid waste. Doctoral Thesis, Lund University

  13. Magnusson A, Aronsson PO, Lundgren K, Stenström K (2008) Charaterization of carbon-14 in Swedish light water reactors. Radiat Saf J S:110–121

  14. EPRI (2004) Evaluation of fuel clad corrosion product deposits and circulating corrosion products in PWR. Technical Report 1009951

  15. Mukai S, Saigusa M, Sakashita A, Horikawa Y, Higuchi N (2008) Characterization of C-14 in PWR radioactive wastes. J Power Energy Syst 2(1):215–220

    Article  Google Scholar 

  16. Chen J, Bengtsson B (2008) Scanning electron microscopy study on the particulate corrosion products from PWR primary water under different operation and water chemistry conditions. In: VGB PowerTech (ed) NPC ‘08, Berlin Int Conf on Water Chemistry of Nuclear Reactor Systems

  17. Pourbaix M (1963) Atlas d’equilibres electrochimiques. Gauthier-Villars & Cie, Paris

    Google Scholar 

  18. EPRI (2006) Pressurized water reactor primary water zinc application guidelines. Technical Report 1013420

  19. Wagner W, Pruss A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31:387–535

    Article  CAS  Google Scholar 

  20. Shock EL, Helgeson HC, Sverjensky DA (1989) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: standard partial molal properties of inorganic neutral species. Geochim Cosmochim Acta 53:2157–2183

    Article  CAS  Google Scholar 

  21. Shock EL, Helgeson HC (1990) Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: standard partial molal properties of organic species. Geochim Cosmochim Acta 54:915–945

    Article  CAS  Google Scholar 

  22. Shock EL, McKinnon WB (1993) Hydrothermal processing of cometary volatiles—applications to Triton. Icarus 106:464–477

    Article  CAS  Google Scholar 

  23. Schulte MD, Shock EL (1993) Aldehydes in hydrothermal solution: standard partial molal thermodynamic properties and relative stabilities at high temperatures and pressures. Geochim Cosmochim Acta 57:3835–3846

    Article  CAS  Google Scholar 

  24. Shock EL (1995) Organic acids in hydrothermal solutions: standard molal thermodynamic properties of carboxylic acids and estimates of dissociation constants at high temperatures and pressures. Am J Sci 295:496–580

    Article  CAS  Google Scholar 

  25. Amend JP, Helgeson HC (1997) Calculation of the standard molal thermodynamic properties of aqueous biomolecules at elevated temperatures and pressures. Part 1 L-alpha-amino acids. J Chem Soc Faraday Trans 93:1927–1941

    Article  CAS  Google Scholar 

  26. Helgeson HC, Delany JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci 278A:1–229

    Google Scholar 

  27. Wagman DD, Evans WH, Parker VB et al (1982) The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. J Phys Chem Ref Data 11(Supp 2):1–392

    Google Scholar 

  28. Johnson JW Personal calculation, Earth Sciences Dept., Lawrence Livermore National Lab, Livermore, CA. Parameters given provide smooth metastable extrapolation of one-bar steam properties predicted by the Haar et al. (1984) equation of state to temperatures < the saturation temperature (99.632 °C)

  29. Shock EL (1993) Hydrothermal dehydration of aqueous organic compounds. Geochim Cosmochim Acta 57:3341–3349

    Article  CAS  Google Scholar 

  30. Helgeson HC, Owens CE, Knox AM, Richard L (1998) Calculation of the standard molal thermodynamic properties of crystalline, liquid, and gas organic molecules at high temperatures and pressures. Geochim Cosmochim Acta 62:985–1081

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Petit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petit, L., Bachet, M. & Schneider, H. Study of the speciation of carbon-14 in the primary circuit of pressurized-water reactors. J Radioanal Nucl Chem 295, 755–765 (2013). https://doi.org/10.1007/s10967-012-1835-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-1835-6

Keywords

Navigation