Skip to main content
Log in

Effect of pH, ionic strength and temperature on sorption characteristics of Th(IV) on oxidized multiwalled carbon nanotubes

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Oxidized multiwalled carbon nanotubes (MWCNTs) were characterized by SEM and FTIR. The sorption of Th(IV) on MWCNTs was studied as a function of contact time, pH, ionic strength, Th(IV) concentration and temperature. The results indicate that the sorption of Th(IV) on MWCNTs is strongly dependent on pH and weakly dependent on ionic strength. The sorption thermodynamics of Th(IV) on MWCNTs was carried out at 293.15, 313.15 and 333.15 K, respectively, and the thermodynamic parameters (standard free energy changes (ΔG 0), standard enthalpy change (ΔH 0) and standard entropy change (ΔS 0)) were calculated from the temperature dependent sorption isotherms. The sorption of Th(IV) on MWCNTs is a spontaneous and endothermic process. The oxidized MWCNTs may be a promising candidate for the preconcentration and solidification of Th(IV), or its analogue actinides from large volumes of aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tan XL, Fan QH, Wang XK, Grambow B (2009) Environ Sci Technol 43:3115

    Article  CAS  Google Scholar 

  2. Chen CL, Wang XK, Nagatsu M (2009) Environ Sci Technol 43:2362

    Article  CAS  Google Scholar 

  3. Fan QH, Tan XL, Li JX, Wang XK, Wu WS, Montavon G (2009) Environ Sci Technol 43:5776

    Article  CAS  Google Scholar 

  4. Tan XL, Wang XK, Geckeis H, Rabung Th (2008) Environ Sci Technol 42:6532

    Article  CAS  Google Scholar 

  5. Chen CL, Xu D, Tan XL, Wang XK (2007) J Radioanal Nucl Chem 273:227

    Article  CAS  Google Scholar 

  6. Seco F, Hennig C, Pablo J, Rovira M, Rojo I, Marti V, Gimenez J, Duro L, Grive M, Bruno J (2009) Environ Sci Technol 43:2825

    Article  CAS  Google Scholar 

  7. Ren XM, Wang SW, Yang ST, Li JX (2010) J Radioanal Nucl Chem 283:253

    Article  CAS  Google Scholar 

  8. Hu J, Xu D, Chen L, Wang XK (2009) J Radioanal Nucl Chem 279:701

    Article  CAS  Google Scholar 

  9. Tan XL, Fang M, Wang XK (2010) Molecules 15:8431

    Article  CAS  Google Scholar 

  10. Ayata S, Aydinci S, Merdivan M, Binzet G, Kulcu N (2010) J Radioanal Nucl Chem 285:525

    Article  CAS  Google Scholar 

  11. Chen CL, Wang XK (2007) Appl Geochem 22:436

    Article  CAS  Google Scholar 

  12. Sabale SR, Jadhav DV, Mohite BS (2010) J Radioanal Nucl Chem 284:273

    Article  CAS  Google Scholar 

  13. Bursali EA, Merdivan M, Yurdakoc M (2010) J Radioanal Nucl Chem 283:471

    Article  CAS  Google Scholar 

  14. Qian LJ, Zhao JN, Hu PZ, Geng YX, Wu WS (2010) J Radioanal Nucl Chem 283:653

    Article  CAS  Google Scholar 

  15. Zhang HX, Yang C, Tao ZY (2009) J Radioanal Nucl Chem 279:317

    Article  CAS  Google Scholar 

  16. Chen CL, Li XL, Wang XK (2007) Radiochim Acta 95:261

    Article  CAS  Google Scholar 

  17. Tan XL, Wang XK, Fang M, Chen CL (2007) Colloid Surf A 296:109

    Article  CAS  Google Scholar 

  18. Yu SM, Chen CL, Chang PP, Wang TT, Lu SS, Wang XK (2008) Appl Clay Sci 38:219

    Article  CAS  Google Scholar 

  19. Sheng GD, Hu J, Wang XK (2008) Appl Radiat Isot 66:1313

    Article  CAS  Google Scholar 

  20. Zhao DL, Feng SJ, Chen CL, Chen SH, Xu D, Wang XK (2008) Appl Clay Sci 41:17

    Article  CAS  Google Scholar 

  21. Zhang HX, Yuan JQ, Tao ZY (2007) J Radioanal Nucl Chem 273:495

    Google Scholar 

  22. Humelnicu D, Drochioiu G, Sturza MI, Cecal A, Popa K (2006) J Radioanal Nucl Chem 270:637

    Article  CAS  Google Scholar 

  23. Salinas-Pedroza MG, Olguin MT (2004) J Radioanal Nucl Chem 260:115

    Article  CAS  Google Scholar 

  24. Guo ZJ, Niu LJ, Tao ZY (2005) J Radioanal Nucl Chem 266:333

    Article  CAS  Google Scholar 

  25. Iijima S (1991) Nature (London) 354:56

    Article  CAS  Google Scholar 

  26. Chen CL, Hu J, Xu D, Tan XL, Meng YD, Wang XK (2008) J Colloid Interf Sci 323:33

    Article  CAS  Google Scholar 

  27. Tan XL, Fang M, Chen CL, Yu SM, Wang XK (2008) Carbon 46:1741

    Article  CAS  Google Scholar 

  28. Ren XM, Chen CL, Nagatsu M, Wang XK (2011) Chem Eng J. doi:10.1016/j.cej.2010.08.045

  29. Tan XL, Xu D, Chen CL, Wang XK, Hu WP (2008) Radiochim Acta 96:23

    Article  CAS  Google Scholar 

  30. Xu D, Tan XL, Chen CL, Wang XK (2008) J Hazard Mater 154:407

    Article  CAS  Google Scholar 

  31. Shao DD, Jiang ZQ, Wang XK, Li JX, Meng YD (2009) J Phys Chem B 113:860

    Article  CAS  Google Scholar 

  32. Hu J, Chen CL, Zhu XX, Wang XK (2009) J Hazard Mater 162:1542

    Article  CAS  Google Scholar 

  33. Yang ST, Li JX, Shao DD, Hu J, Wang XK (2009) J Hazard Mater 166:109

    Article  CAS  Google Scholar 

  34. Sheng GD, Shao DD, Ren XM, Wang XQ, Li JX, Chen YX, Wang XK (2010) J Hazard Mater 178:505

    Article  CAS  Google Scholar 

  35. Wang XK, Chen CL, Hu WP, Ding AP, Xu D, Zhou X (2005) Environ Sci Technol 39:2856

    Article  CAS  Google Scholar 

  36. Chen CL, Hu J, Shao DD, Li JX, Wang XK (2009) J Hazard Mater 164:923

    Article  CAS  Google Scholar 

  37. Shao DD, Hu J, Wang XK (2010) Plasma Process Polymer 7:977

    Article  CAS  Google Scholar 

  38. Fan QH, Shao DD, Hu J, Chen CL, Wu WS, Wang XK (2009) Radiochim Acta 97:141

    Article  CAS  Google Scholar 

  39. Belloni F, Kutahyali C, Rondinella VV (2009) Environ Sci Technol 43:1250

    Article  CAS  Google Scholar 

  40. Li JX, Chen SY, Sheng GD, Hu J, Tan XL, Wang XK (2011) Chem Eng J 166:551

    Article  CAS  Google Scholar 

  41. Sheng GD, Li JX, Shao DD, Hu J, Chen CL, Chen YX, Wang XK (2010) J Hazard Mater 178:333

    Article  CAS  Google Scholar 

  42. Chen CL, Liang B, Ogino A, Wang XK, Nagatsu M (2009) J Phys Chem C 113:7659

    Article  CAS  Google Scholar 

  43. Reiller P, Casanova F, Moulin V (2005) Environ Sci Technol 39:1641

    Article  CAS  Google Scholar 

  44. Jakobsson AM (1999) J Colloid Interf Sci 220:367

    Article  CAS  Google Scholar 

  45. Guo ZJ, Yu XM, Guo FH, Tao ZY (2005) J Colloid Interf Sci 288:14

    Article  CAS  Google Scholar 

  46. Shao DD, Hu J, Sheng GD, Ren XM, Chen CL, Wang XK (2010) J Phys Chem C 114:21524

    Article  CAS  Google Scholar 

  47. Hu J, Shao DD, Chen CL, Sheng GD, Ren XM, Wang XK (2011) J Hazard Mater 185:463

    Article  CAS  Google Scholar 

  48. Zeng YH, Liao XP, He Q, Shi B (2009) J Radioanal Nucl Chem 280:91

    Article  CAS  Google Scholar 

  49. Shao DD, Ren XM, Hu J, Chen YX, Wang XK (2010) Colloid Surf A Physicochem Eng Aspects 360:74

    Article  CAS  Google Scholar 

  50. Hu J, Shao DD, Chen CL, Sheng GD, Li JX, Wang XK, Nagatsu M (2010) J Phys Chem B 114:6779

    Article  CAS  Google Scholar 

  51. Hu BW, Cheng W, Zhang H, Sheng GD (2010) J Radioanal Nucl Chem 285:389

    Article  CAS  Google Scholar 

  52. Zhao GX, Zhang HX, Fan QH, Ren XM, Li JX, Chen YX, Wang XK (2010) J Hazard Mater 173:661

    Article  CAS  Google Scholar 

  53. Lu SS, Xu JZ, Zhang CC, Niu ZW (2011) J Radioanal Nucl Chem. doi:10.1007/s10967-010-0849-1

  54. Genc-Fuhrman H, Tjell JC, Mcconchie D (2004) Environ Sci Technol 38:2424

    Article  Google Scholar 

Download references

Acknowledgments

Financial supports from Anhui Province Department of Education Fund (2006KJ123, 20101941) and Anhui Province Department of Health Medical Science Fund (2010C081) are acknowledged. We also thank Prof. X. Wang (IPP, China) for providing us the samples of MWCNTs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingming Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Tao, X. & Song, X. Effect of pH, ionic strength and temperature on sorption characteristics of Th(IV) on oxidized multiwalled carbon nanotubes. J Radioanal Nucl Chem 288, 859–865 (2011). https://doi.org/10.1007/s10967-011-1007-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-011-1007-0

Keywords

Navigation