Skip to main content
Log in

Effect of pH, ionic strength and humic substances on the adsorption of Uranium (VI) onto Na-rectorite

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

A Correction to this article was published on 03 January 2020

This article has been updated

Abstract

In this study, the adsorption of U(VI) from aqueous solution on Na-rectorite was studied as a function of various environmental conditions such as contact time, pH, ionic strength, soil humic acid (HA)/fulvic acid (FA), solid contents, and temperature under ambient conditions by using batch technique. The kinetic adsorption is fitted by the pseudo-second-order model very well. The adsorption of U(VI) on Na-rectorite was strongly dependent on pH and ionic strength. A positive effect of HA/FA on U(VI) adsorption was found at low pH, whereas a negative effect was observed at high pH. The presence of HA/FA enhanced the U(VI) adsorption at low pH values, but reduced U(VI) adsorption at high pH. The thermodynamic parameters (ΔH 0, ΔS 0, and ΔG 0) were also calculated from the temperature dependent adsorption isotherms, and the results suggested that the adsorption of U(VI) on Na-rectorite was a spontaneous and endothermic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 03 January 2020

    Correction to: J Radioanal Nucl Chem (2011) 287:557���565

References

  1. Hsyun SP, Cho YH, Hahn PS, Kim SJ (2001) J Radioanal Nucl Chem 250:55–62

    Article  Google Scholar 

  2. Akyil S, Aslani MAA, Eral M (2003) J Radioanal Nucl Chem 256:45–51

    Article  CAS  Google Scholar 

  3. Sylwester ER, Hudson EA, Allen PG (2000) Geochim Cosmochim Acta 64:2431–2438

    Article  CAS  Google Scholar 

  4. Liao X, Lu Z, Xu D, Liu X, Shi B (2004) Environ Sci Technol 38:324–328

    Article  CAS  Google Scholar 

  5. Sachs S, Bernhard G (2008) Chemosphere 72:1441–1447

    Article  CAS  Google Scholar 

  6. Baik MH, Cho WJ, Hahn PS (2004) J Radioanal Nucl Chem 260:495–502

    Article  CAS  Google Scholar 

  7. Shao D, Jiang Z, Wang X, Li J, Meng Y (2009) J Phys Chem B 113:860–864

    Article  CAS  Google Scholar 

  8. Zhang G, Yang X, Liu Y, Jia Y, Yu G, Ouyang S (2004) J Colloid Interface Sci 278:265–269

    Article  CAS  Google Scholar 

  9. Zhang G, Liu Y, Xie Y, Yang X (2005) Appl Clay Sci 29:15–21

    Article  CAS  Google Scholar 

  10. Tan X, Chen C, Yu S, Wang X (2008) Appl Geochem 23:2767–2777

    Article  CAS  Google Scholar 

  11. Yu S, Chen C, Chang P, Wang T, Lu S, Wang X (2008) Appl Clay Sci 38:219–226

    Article  CAS  Google Scholar 

  12. Chang P, Yu S, Chen T, Ren A, Chen C, Wang X (2007) J Radioanal Nucl Chem 274:153–160

    Article  CAS  Google Scholar 

  13. Wu W, Fan Q, Lu S, Niu S, Wang X (2006) Adsorpt Sci Technol 24:601–610

    Article  CAS  Google Scholar 

  14. Hu J, Chen C, Sheng G, Li J, Chen Y, Wang X (2010) Radiochim Acta 98:1–9

    Article  CAS  Google Scholar 

  15. Xu D, Chen C, Tan X, Jun H, Wang X (2007) Appl Geochem 22:2892–2906

    Article  CAS  Google Scholar 

  16. Tan X, Wang X, Geckeis H, Rabung T (2008) Environ Sci Technol 42:6532–6537

    Article  CAS  Google Scholar 

  17. Tan X, Fan Q, Wang X, Grambow B (2009) Environ Sci Technol 43:3115–3121

    Article  CAS  Google Scholar 

  18. Tan X, Chang P, Fan Q, Zhou X, Yu SM, Wang S, Wang X (2008) Colloids Surf A 328:8–14

    Article  CAS  Google Scholar 

  19. Du Q, Sun Z, Forsling W, Tang H (1997) J Colloid Interface Sci 187:221–231

    Article  CAS  Google Scholar 

  20. Naveau A, Monteil-Rivera F, Dumonceau J, Catalette H, Simoni E (2006) J Colloid Interface Sci 293:27–35

    Article  CAS  Google Scholar 

  21. Ordoñez-Regil E, Drot R, Simoni E (2003) J Colloid Interface Sci 263:391–399

    Article  CAS  Google Scholar 

  22. Giustetto R, Xamena FXL, Ricchiardi G, Bordiga S, Damin A, Gobetto R, Chierotti MR (2005) J Phys Chem B 109:19360–19368

    Article  CAS  Google Scholar 

  23. Ho YS, McKay G (2000) Water Res 34:735–742

    Article  CAS  Google Scholar 

  24. Gorman-Lewis D, Burns PC, Fein JB (2008) J Chem Thermodyn 40:335–352

    Article  CAS  Google Scholar 

  25. Gorman-Lewis D, Fein JB, Burns PC, Szymanowski JES, Converse J (2008) J Chem Thermodyn 40:980–990

    Article  CAS  Google Scholar 

  26. Kowal-Fouchard A, Drot R, Simoni E, Ehrhardt JJ (2004) Environ Sci Technol 38:1399–1407

    Article  CAS  Google Scholar 

  27. Fan Q, Shao D, Lu Y, Wang S, Wang X (2009) Chem Eng J 150:188–195

    Article  CAS  Google Scholar 

  28. Ren X, Wang S, Yang S (2010) J Radioanal Nucl Chem 283:253–259

    Article  CAS  Google Scholar 

  29. Montavon G, Markai S, Andres Y, Grambow B (2002) Environ Sci Technol 36:3303–3309

    Article  CAS  Google Scholar 

  30. Takahashi Y, Minai Y, Ambe S, Makide Y, Ambe F (1999) Geochim Cosmochim Acta 63:815–836

    Article  CAS  Google Scholar 

  31. Xu D, Wang X, Chen C, Zhou X, Tan X (2006) Radiochim Acta 94:429–434

    Article  CAS  Google Scholar 

  32. Xu D, Shao D, Chen C, Ren AP, Wang X (2006) Radiochim Acta 94:97–102

    Article  CAS  Google Scholar 

  33. Bhattacharyya KG, Gupta SS (2008) Colloid Surf. A 317:71–79

    Article  CAS  Google Scholar 

  34. Sheng G, Shao D, Fan Q, Xu D, Chen Y, Wang X (2009) Radiochim Acta 97:621–630

    Article  CAS  Google Scholar 

  35. Langmuir I (1918) J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  36. Tan X, Wang X, Fang M, Chen C (2007) Colloid Surf. A 296:109–116

    Article  CAS  Google Scholar 

  37. Ibrahim HA, El-Kamash AM, Hanafy M, Abdel-Monem NM (2008) Chem Eng J 144:67–74

    Article  CAS  Google Scholar 

  38. Kilpatrick M, Baker L Jr, McKinney C Jr (1953) J Phys Chem 57:385–390

    Article  CAS  Google Scholar 

  39. Shahwan T, Erten HN (2004) J Radioanal Nucl Chem 260:43–48

    Article  CAS  Google Scholar 

  40. Donat R, Akdogan A, Erdem E, Cetisli H (2005) J Colloid Interface Sci 286:43–52

    Article  CAS  Google Scholar 

  41. Ozcan A, Oncu E, Ozcan A (2006) Colloid Surf A 277:90–97

    Article  CAS  Google Scholar 

  42. Khan AA, Singh RP (1987) Colloids Surf A 24:33–42

    Article  CAS  Google Scholar 

  43. Li W, Pan G, Zhang MY, Zhao DY, Yang YH, Chen H, He GZ (2008) J Colloid Interface Sci 319:385–391

    Article  CAS  Google Scholar 

  44. Chang P, Wang X, Yu S, Wang S (2007) Colloid Surf A 302:75–81

    Article  CAS  Google Scholar 

  45. Shao D, Fan Q, Li J, Niu Z, Wu W, Chen Y, Wang X (2009) Microporous Mesoporous Mater 123:1–9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from the National Natural Science Foundation of China (20907055; 20971126) and Knowledge Innovation Program of CAS are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donglin Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, D., Yang, S., Chen, S. et al. Effect of pH, ionic strength and humic substances on the adsorption of Uranium (VI) onto Na-rectorite. J Radioanal Nucl Chem 287, 557–565 (2011). https://doi.org/10.1007/s10967-010-0846-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-010-0846-4

Keywords

Navigation