Skip to main content
Log in

A review of advancements in commercial and non-commercial Nafion-based proton exchange membranes for direct methanol fuel cells

  • Review paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Nafion membranes are commercially available for the application of direct methanol fuel cells (DMFCs) due to their unique nano-porous structure, high wettability, high ion exchange capacity due to sulfonic groups and high mechanical strength. However, its high cost and high swelling in water result in high methanol crossover, low chemical stability and low ion conductivity at elevated temperatures that limit its usage. Moreover, in commercial membranes when the thickness increases, the ion conductivity compromises and when the thickness decreases, the fuel crossover increases which disrupts the performance of the fuel cell. The modification of pre-existing Nafion membrane such as Nafion 115, Nafion 117, Nafion 212, Nafion 112 and laboratory recasted Nafion membrane is a promising requirement for their future applications. Additives such as organic, inorganic nanoparticles and polymers apply to the Nafion membrane that not only tune the physical aspects of the membrane but also improve the electrochemical properties of the membrane. This review article focuses on advances in different Nafion commercial membranes and laboratory recasted non-commercial Nafion membrane that make under special conditions after modifications. This paper provides challenges, advantages, and disadvantages, as well as future advances in the application of composite membranes in direct methanol fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All of the data created or analyzed during the study is contained in this publication and the files with extra information attached.

Abbreviations

GO:

Graphene Oxide

SGO:

Sulfonated Graphene Oxide

PCM:

Phase change material

Sc-Co2 :

Super critical carbon dioxide

EBL:

Electron beam laser

PFA:

Polyfurfuryl alcohol

PEG:

Polyethylene glycol

PVDF:

Poly (vinylidene fluoride)

PVDF-HFP:

Poly (vinylidene fluoride-co-hexafluoropropylene)

SPVDF:

Sulfonated Poly (vinylidene fluoride)

SPVDF-HFP:

Sulfonated Poly (vinylidene fluoride-co-hexafluoropropylene)

PBI:

Polybenzimidazole

Pd:

Palladium

FEP:

Poly(tetrafluoroethylene-co-hexafluoropropylene)

PGMA:

Poly(glycidyl methacrylate)

Ar:

Argon

EB:

Electron Beam

PVA:

Polyvinyl alcohol (PVA)

P4VP:

Poly(4-vinyl pyridine)

PEDT:

3,4-polyethylenedioxythiophene

PPy:

Polypyrrole

PANi:

Polyaniline

BMPyr:

1-Butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl)imide

PAH:

Poly (allylamine hydrochloride)

CO2 :

Carbon Dioxide

TiO2 :

Titanium Dioxide

SiO2 :

Silicon Dioxide

CS:

Chitosan

SiWA:

Silicotungstic acid

TPA Hydroxide:

Tetrapropylammonium hydroxide

PSU:

Polysulfone

SPAEK:

Poly(arylene ether ketone)

SPANi:

Sulfonated Polyaniline

PC:

Polycarbonate

PPO:

Polyphenylene oxide

SPEEK:

Sulfonated poly(ether ether ketone)

PEEK:

poly(ether ether ketone)

CF4 :

Carbon tetrafluoride

SDF:

Spirodifluorenyl

PAI:

Polyacrylamide

PI:

Polyimide

PSSf:

Poly(styrene sulfone)

PEI:

polyethylenimine

F-silica:

Functionalized silica

(SN-b-CD):

β-cyclodextrin (β-CD) modified silica nanoparticles

MSN:

Mesoporous silica nanoparticles

Bio-SiO2-sys:

Bioinspired silica cysteine

SZO:

Zirconyl oxalate

ZrO2 :

Zirconia

Zr(HPO4)2 :

Zirconium phosphate

ZrP:

Zirconium phosphate

BN:

Boron Nitride

S-graphene:

Sulfonated graphene

CP:

Calcium phosphate

CHP:

Calcium hydroxyphosphate

H-ZSM:

Hierarchically porous zeolite

NAFB:

Acid functionalized zeolite Beta

HA:

Hydroxyapatite

BMMT:

Benzyltrimethylammonium chloride modified montmorillonite

MMT:

Montmorillonite

MOR:

Mordenite

MPTPS:

3-Mercaptopropyl)trimethoxysilane

Al-MCM:

Acid-functionalized mesostructured aluminosilicate

MOF:

Metal-organic framework

UiO-66:

Zirconium based metal organic framework

Na2Ti3O:

Sodium titanate

PtRu:

Platinum rubidium

CQDs:

Carbon quantum dots

CNT:

Carbon nanotube

MWCNT:

Multi-walled Carbon nanotubes

GDY:

Graphdiyne

GCN:

Graphitic Carbon Nitride

s-GCN:

Sulfonated Graphitic Carbon Nitride

γ-Fe2O3 :

Iron oxide gamma

PSS:

Polystyrene sulfonic acid

ORMOSIL:

Organically modified silica

SPBI:

sulfonated poly(benzobisimidazole)

P2VP:

Poly(2-vinylpyridine)

CH3OH:

Methanol

PTFE:

Poly(tetrafluoroethylene)

CO2 :

Carbon dioxide

H2O:

Water

PEM:

Proton exchange membrane

Pd(NH3)4Cl2 :

TetraamMinepalladium (II) Chloride

References

  1. Asghar MR, Anwar MT, Xia G, Zhang J (2020) Cellulose/Poly(vinylidene fluoride hexafluoropropylene) composite membrane with titania nanoparticles for lithium-ion batteries. Mater Chem Phys 252:123122. https://doi.org/10.1016/j.matchemphys.2020.123122

    Article  CAS  Google Scholar 

  2. Asghar MR, Zhang Y, Wu A et al (2018) Preparation of microporous cellulose/poly(vinylidene fluoride-hexafluoropropylene) membrane for lithium ion batteries by phase inversion method. J Power Sources 379:197–205. https://doi.org/10.1016/j.jpowsour.2018.01.052

    Article  CAS  Google Scholar 

  3. Asghar MR, Anwar MT, Naveed A, Zhang J (2019) A review on inorganic nanoparticles modified composite membranes for lithium-ion batteries: recent progress and prospects. Membranes (Basel) 9:78. https://doi.org/10.3390/membranes9070078

    Article  CAS  PubMed  Google Scholar 

  4. Asghar MR, Anwar MT, Rasheed T et al (2019) Lithium salt doped poly(vinylidene fluoride)/cellulose acetate composite gel electrolyte membrane for lithium ion battery. IOP Conf Ser Mater Sci Eng 654:012017. https://doi.org/10.1088/1757-899X/654/1/012017

    Article  CAS  Google Scholar 

  5. Guan L, Yu W, Rehman Asghar M et al (2024) Effect of graphene aerogel as a catalyst layer additive on performance of direct methanol fuel cell. Fuel 360:130503. https://doi.org/10.1016/j.fuel.2023.130503

    Article  CAS  Google Scholar 

  6. Anwar MT, Yan X, Asghar MR et al (2019) MoS2-rGO hybrid architecture as durable support for cathode catalyst in proton exchange membrane fuel cells. Chinese J Catal 40:1160–1167. https://doi.org/10.1016/S1872-2067(19)63365-6

    Article  CAS  Google Scholar 

  7. Anwar MT, Yan X, Asghar MR et al (2019) Recent advances in hybrid support material for Pt-based electrocatalysts of proton exchange membrane fuel cells. Int J Energy Res 43:2694–2721. https://doi.org/10.1002/er.4322

    Article  CAS  Google Scholar 

  8. Cheng X, Wei G, Luo L et al (2023) Application of solid catalysts with an ionic liquid layer (SCILL) in PEMFCs: from half-cell to full-cell. Electrochem Energy Rev 6:32. https://doi.org/10.1007/s41918-023-00195-5

    Article  CAS  Google Scholar 

  9. Kirubakaran A, Jain S, Nema RK (2009) A review on fuel cell technologies and power electronic interface. Renew Sustain Energy Rev 13:2430–2440. https://doi.org/10.1016/j.rser.2009.04.004

    Article  CAS  Google Scholar 

  10. Zou S, Li Y, Jin H et al (2022) Highly safe, durable, adaptable, and flexible fuel cell using gel/sponge composite material. Adv Energy Mater. https://doi.org/10.1002/aenm.202103178

    Article  Google Scholar 

  11. Jin H, Zou S, Wen Q et al (2023) Performance improvement of air-breathing proton exchange membrane fuel cell (PEMFC) with a condensing-tower-like curved flow field. Chinese Chem Lett 34:107441. https://doi.org/10.1016/j.cclet.2022.04.039

    Article  CAS  Google Scholar 

  12. Souzy R, Ameduri B (2005) Functional fluoropolymers for fuel cell membranes. Prog Polym Sci 30:644–687. https://doi.org/10.1016/j.progpolymsci.2005.03.004

    Article  CAS  Google Scholar 

  13. Xu P, Wen Q, Zou S et al (2023) A 3D printed alveolus-inspired flow field for direct methanol fuel cells with enhanced performance and durability. J Mater Chem A 11:8845–8857. https://doi.org/10.1039/D2TA09709E

    Article  CAS  Google Scholar 

  14. Li Z, Zhou X, Singh S et al (2023) Degradation of platinum electrocatalysts for methanol oxidation by lead contamination. Chinese Chem Lett 34:107230. https://doi.org/10.1016/j.cclet.2022.02.035

    Article  CAS  Google Scholar 

  15. Wycisk R, Pintauro PN, Park JW (2014) New developments in proton conducting membranes for fuel cells. Curr Opin Chem Eng 4:71–78. https://doi.org/10.1016/j.coche.2014.01.012

    Article  Google Scholar 

  16. Zhang L, Chae S-R, Hendren Z et al (2012) Recent advances in proton exchange membranes for fuel cell applications. Chem Eng J 204–206:87–97. https://doi.org/10.1016/j.cej.2012.07.103

    Article  CAS  Google Scholar 

  17. Zakil FA, Kamarudin SK, Basri S (2016) Modified Nafion membranes for direct alcohol fuel cells: An overview. Renew Sustain Energy Rev 65:841–852. https://doi.org/10.1016/j.rser.2016.07.040

    Article  CAS  Google Scholar 

  18. Cele N, Ray SS (2009) Recent progress on Nafion-based nanocomposite membranes for fuel cell applications. Macromol Mater Eng 294:719–738. https://doi.org/10.1002/mame.200900143

    Article  CAS  Google Scholar 

  19. Yin C, Li J, Zhou Y et al (2018) Enhancement in proton conductivity and thermal stability in nafion membranes induced by incorporation of sulfonated carbon nanotubes. ACS Appl Mater Interfaces 10:14026–14035. https://doi.org/10.1021/acsami.8b01513

    Article  CAS  PubMed  Google Scholar 

  20. Frühwirt P, Kregar A, Törring JT et al (2020) Holistic approach to chemical degradation of Nafion membranes in fuel cells: modelling and predictions. Phys Chem Chem Phys 22:5647–5666. https://doi.org/10.1039/C9CP04986J

    Article  PubMed  Google Scholar 

  21. Xu T (2005) Ion exchange membranes: State of their development and perspective. J Memb Sci 263:1–29. https://doi.org/10.1016/j.memsci.2005.05.002

    Article  CAS  Google Scholar 

  22. Zhu L-Y, Li Y-C, Liu J et al (2022) Recent developments in high-performance Nafion membranes for hydrogen fuel cells applications. Pet Sci 19:1371–1381. https://doi.org/10.1016/j.petsci.2021.11.004

    Article  CAS  Google Scholar 

  23. Ahmad S, Nawaz T, Ali A et al (2022) An overview of proton exchange membranes for fuel cells: Materials and manufacturing. Int J Hydrogen Energy 47:19086–19131. https://doi.org/10.1016/j.ijhydene.2022.04.099

    Article  CAS  Google Scholar 

  24. Berretti E, Osmieri L, Baglio V et al (2023) Direct Alcohol Fuel Cells: A Comparative Review of Acidic and Alkaline Systems. Electrochem Energy Rev 6:30. https://doi.org/10.1007/s41918-023-00189-3

    Article  CAS  Google Scholar 

  25. Halim J, Büchi FN, Haas O et al (1994) Characterization of perfluorosulfonic acid membranes by conductivity measurements and small-angle x-ray scattering. Electrochim Acta 39:1303–1307. https://doi.org/10.1016/0013-4686(94)E0051-Z

    Article  CAS  Google Scholar 

  26. Lourenssen K, Williams J, Ahmadpour F et al (2019) Vanadium redox flow batteries: A comprehensive review. J Energy Storage 25:100844. https://doi.org/10.1016/j.est.2019.100844

    Article  Google Scholar 

  27. Röschenthaler G-V, Storzer W (1982) A Stable Tetraalkoxy(hydroxy)phosphorane and Phosphorane Oxide Anion by Hydrolysis of Tetraalkoxy(halogen)phosphoranes. Angew Chemie Int Ed English 21:208–208. https://doi.org/10.1002/anie.198202081

    Article  Google Scholar 

  28. Vilčiauskas L, Kreuer K-D (2011) Comment on “Mixed Grotthuss and Vehicle Transport Mechanism in Proton Conducting Polymers from Ab initio Molecular Dynamics Simulations.” Chem Mater 23:3377–3378. https://doi.org/10.1021/cm200865v

    Article  CAS  Google Scholar 

  29. Alberti G, Casciola M (2003) composite membranes for medium-temperature PEM fuel cells. Annu Rev Mater Res 33:129–154. https://doi.org/10.1146/annurev.matsci.33.022702.154702

    Article  CAS  Google Scholar 

  30. Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Memb Sci 185:29–39. https://doi.org/10.1016/S0376-7388(00)00632-3

    Article  CAS  Google Scholar 

  31. Zhang H, Shen PK (2012) Recent Development of Polymer Electrolyte Membranes for Fuel Cells. Chem Rev 112:2780–2832. https://doi.org/10.1021/cr200035s

    Article  CAS  PubMed  Google Scholar 

  32. Yang L, Nik-Ghazali N-N, Ali MAH et al (2023) A review on thermal management in proton exchange membrane fuel cells: Temperature distribution and control. Renew Sustain Energy Rev 187:113737. https://doi.org/10.1016/j.rser.2023.113737

    Article  CAS  Google Scholar 

  33. Chen Q, Zhang G, Zhang X et al (2021) Thermal management of polymer electrolyte membrane fuel cells: A review of cooling methods, material properties, and durability. Appl Energy 286:116496. https://doi.org/10.1016/j.apenergy.2021.116496

    Article  CAS  Google Scholar 

  34. Mo S, Du L, Huang Z et al (2023) Recent Advances on PEM Fuel Cells: From Key Materials to Membrane Electrode Assembly. Electrochem Energy Rev 6:28. https://doi.org/10.1007/s41918-023-00190-w

    Article  CAS  Google Scholar 

  35. Qiu D, Peng L, Lai X et al (2019) Mechanical failure and mitigation strategies for the membrane in a proton exchange membrane fuel cell. Renew Sustain Energy Rev 113:109289. https://doi.org/10.1016/j.rser.2019.109289

    Article  CAS  Google Scholar 

  36. Xu K, Pei S, Zhang W et al (2022) Chemical stability of proton exchange membranes synergistically promoted by organic antioxidant and inorganic radical scavengers. J Memb Sci 655:120594. https://doi.org/10.1016/j.memsci.2022.120594

    Article  CAS  Google Scholar 

  37. Xu F, Chen Y, Li J et al (2022) Robust poly(alkyl–fluorene isatin) proton exchange membranes grafted with pendant sulfonate groups for proton exchange membrane fuel cells. J Memb Sci 664:121045. https://doi.org/10.1016/j.memsci.2022.121045

    Article  CAS  Google Scholar 

  38. Li H-Y, Liu Y-L (2014) Nafion-functionalized electrospun poly(vinylidene fluoride) (PVDF) nanofibers for high performance proton exchange membranes in fuel cells. J Mater Chem A 2:3783–3793. https://doi.org/10.1039/C3TA14264G

    Article  CAS  Google Scholar 

  39. Aricò AS, Srinivasan S, Antonucci V (2001) DMFCs: from fundamental aspects to technology development. Fuel Cells 1:133–161. https://doi.org/10.1002/1615-6854(200107)1:2%3c133::AID-FUCE133%3e3.3.CO;2-X

    Article  Google Scholar 

  40. Wan N (2023) Durability study of direct methanol fuel cell under accelerated stress test. J Power Sources 556:232470. https://doi.org/10.1016/j.jpowsour.2022.232470

    Article  CAS  Google Scholar 

  41. Mehmood A, An M-G, Ha HY (2014) Physical degradation of cathode catalyst layer: A major contributor to accelerated water flooding in long-term operation of DMFCs. Appl Energy 129:346–353. https://doi.org/10.1016/j.apenergy.2014.05.016

    Article  CAS  Google Scholar 

  42. Zainoodin AM, Kamarudin SK, Masdar MS et al (2014) Investigation of MEA degradation in a passive direct methanol fuel cell under different modes of operation. Appl Energy 135:364–372. https://doi.org/10.1016/j.apenergy.2014.08.036

    Article  CAS  Google Scholar 

  43. Neburchilov V, Martin J, Wang H, Zhang J (2007) A review of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 169:221–238. https://doi.org/10.1016/j.jpowsour.2007.03.044

    Article  CAS  Google Scholar 

  44. Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy 35:9349–9384. https://doi.org/10.1016/j.ijhydene.2010.05.017

    Article  CAS  Google Scholar 

  45. Abouzari-Lotf E, Nasef MM, Ghassemi H et al (2015) Improved methanol barrier property of nafion hybrid membrane by incorporating nanofibrous interlayer self-immobilized with high level of phosphotungstic acid. ACS Appl Mater Interfaces 7:17008–17015. https://doi.org/10.1021/acsami.5b02268

    Article  CAS  PubMed  Google Scholar 

  46. Lin CW, Lu YS (2013) Highly ordered graphene oxide paper laminated with a Nafion membrane for direct methanol fuel cells. J Power Sources 237:187–194. https://doi.org/10.1016/j.jpowsour.2013.03.005

    Article  CAS  Google Scholar 

  47. Ruhkopf J, Plachetka U, Moeller M et al (2023) Graphene Coating of Nafion Membranes for Enhanced Fuel Cell Performance. ACS Appl Eng Mater 1:947–954. https://doi.org/10.1021/acsaenm.2c00234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim D, Scibioh MA, Kwak S et al (2004) Nano-silica layered composite membranes prepared by PECVD for direct methanol fuel cells. Electrochem commun 6:1069–1074. https://doi.org/10.1016/j.elecom.2004.07.006

    Article  CAS  Google Scholar 

  49. Liu J, Wang H, Cheng S, Chan K-Y (2004) Nafion–polyfurfuryl alcohol nanocomposite membranes with low methanol permeation. Chem Commun 4:728–729. https://doi.org/10.1039/B315742C

    Article  Google Scholar 

  50. Liu J, Wang H, Cheng S, Chan K-Y (2005) Nafion–polyfurfuryl alcohol nanocomposite membranes for direct methanol fuel cells. J Memb Sci 246:95–101. https://doi.org/10.1016/j.memsci.2004.08.016

    Article  CAS  Google Scholar 

  51. Lin CW, Fan KC, Thangamuthu R (2006) Preparation and characterization of high selectivity organic–inorganic hybrid-laminated Nafion 115 membranes for DMFC. J Memb Sci 278:437–446. https://doi.org/10.1016/j.memsci.2005.11.040

    Article  CAS  Google Scholar 

  52. Liu D, Xie Y, Zhao Z et al (2023) Structural optimization and performance trade-off strategies for semi-crystalline sulfonated poly(arylene ether ketone) membranes in high-concentration direct methanol fuel cells. J Energy Chem 85:67–75. https://doi.org/10.1016/j.jechem.2023.05.049

    Article  CAS  Google Scholar 

  53. Bagus Pambudi A, Priyangga A, Hartanto D, Atmaja L (2021) Fabrication and characterization of modified microcrystalline cellulose membrane as proton exchange membrane for direct methanol fuel cell. Mater Today Proc 46:1855–1859. https://doi.org/10.1016/j.matpr.2021.01.431

    Article  CAS  Google Scholar 

  54. Altaf F, Ahmed S, Dastan D et al (2022) Novel sepiolite reinforced emerging composite polymer electrolyte membranes for high-performance direct methanol fuel cells. Mater Today Chem 24:100843. https://doi.org/10.1016/j.mtchem.2022.100843

    Article  CAS  Google Scholar 

  55. Liu D, Xie Y, Zhong J et al (2022) High methanol resistance semi-crystalline sulfonated poly(ether ketone) proton exchange membrane for direct methanol fuel cell. J Memb Sci 650:120413. https://doi.org/10.1016/j.memsci.2022.120413

    Article  CAS  Google Scholar 

  56. Mališ J, Mazúr P, Paidar M et al (2016) Nafion 117 stability under conditions of PEM water electrolysis at elevated temperature and pressure. Int J Hydrogen Energy 41:2177–2188. https://doi.org/10.1016/j.ijhydene.2015.11.102

    Article  CAS  Google Scholar 

  57. Alberti G, Casciola M, Massinelli L, Bauer B (2001) Polymeric proton conducting membranes for medium temperature fuel cells (110–160°C). J Memb Sci 185:73–81. https://doi.org/10.1016/S0376-7388(00)00635-9

    Article  CAS  Google Scholar 

  58. Cho K, Jung H, Choi N et al (2005) A coated Nafion membrane with a PVdF copolymer/Nafion blend for direct methanol fuel cells (DMFCs). Solid State Ionics 176:3027–3030. https://doi.org/10.1016/j.ssi.2005.09.048

    Article  CAS  Google Scholar 

  59. Mondal S, Soam S, Kundu PP (2015) Reduction of methanol crossover and improved electrical efficiency in direct methanol fuel cell by the formation of a thin layer on Nafion 117 membrane: Effect of dip-coating of a blend of sulphonated PVdF-co-HFP and PBI. J Memb Sci 474:140–147. https://doi.org/10.1016/j.memsci.2014.09.023

    Article  CAS  Google Scholar 

  60. Lefaux CJ, Kim B-S, Venkat N, Mather PT (2015) Molecular composite coatings on Nafion using layer-by-layer self-assembly. ACS Appl Mater Interfaces 7:10365–10373. https://doi.org/10.1021/acsami.5b01371

    Article  CAS  PubMed  Google Scholar 

  61. Kim Y, Choi W, Woo S, Hong W (2004) Proton conductivity and methanol permeation in Nafion™/ORMOSIL prepared with various organic silanes. J Memb Sci 238:213–222. https://doi.org/10.1016/j.memsci.2004.04.005

    Article  CAS  Google Scholar 

  62. Sha Wang L, Nan Lai A, Xiao Lin C et al (2015) Orderly sandwich-shaped graphene oxide/Nafion composite membranes for direct methanol fuel cells. J Memb Sci 492:58–66. https://doi.org/10.1016/j.memsci.2015.05.049

    Article  CAS  Google Scholar 

  63. Iwai Y, Ikemoto S, Haramaki K et al (2014) Influence of ligands of palladium complexes on palladium/Nafion composite membranes for direct methanol fuel cells by supercritical CO2 impregnation method. J Supercrit Fluids 94:48–58. https://doi.org/10.1016/j.supflu.2014.06.015

    Article  CAS  Google Scholar 

  64. Choi WC, Kim JD, Woo SI (2001) Modification of proton conducting membrane for reducing methanol crossover in a direct-methanol fuel cell. J Power Sources 96:411–414. https://doi.org/10.1016/S0378-7753(00)00602-9

    Article  CAS  Google Scholar 

  65. Lue SJ, Shih T-S, Wei T-C (2006) Plasma modification on a Nafion membrane for direct methanol fuel cell applications. Korean J Chem Eng 23:441–446. https://doi.org/10.1007/BF02706747

    Article  CAS  Google Scholar 

  66. Tsuchida R, Hiraiwa S, Tsukamoto A et al (2014) Fabrication of function-graded proton exchange membranes for direct methanol fuel cells using electron beam-grafting. Fuel Cells 14:284–290. https://doi.org/10.1002/fuce.201200226

    Article  CAS  Google Scholar 

  67. Hobson LJ, Ozu H, Yamaguchi M et al (2002) Nafion®117 modified by low dose EB irradiation: surface structure and physical properties. J Mater Chem 12:1650–1656. https://doi.org/10.1039/b108898j

    Article  CAS  Google Scholar 

  68. Zhang X, Zhang Y, Nie L et al (2012) Modification of Nafion membrane by Pd-impregnation via electric field. J Power Sources 216:526–529. https://doi.org/10.1016/j.jpowsour.2012.06.036

    Article  CAS  Google Scholar 

  69. Chai BZ, Wang C, Zhang H et al (2010) Nafi on – carbon nanocomposite membranes prepared using hydrothermal carbonization for proton-exchange- membrane fuel cells. 4394–4399. https://doi.org/10.1002/adfm.201001412

  70. Eldin MSM, Elzatahry AA, El-Khatib KM et al (2011) Novel grafted nafion membranes for proton-exchange membrane fuel cell applications. J Appl Polym Sci 119:120–133. https://doi.org/10.1002/app.32613

    Article  CAS  Google Scholar 

  71. Nataraj SK, Wang C, Huang H et al (2012) Highly proton-selective biopolymer layer-coated ion-exchange membrane for direct methanol fuel cells. Chemsuschem 5:392–395. https://doi.org/10.1002/cssc.201100366

    Article  CAS  PubMed  Google Scholar 

  72. Shao ZG, Wang X, Hsing IM (2002) Composite Nafion/polyvinyl alcohol membranes for the direct methanol fuel cell. J Memb Sci 210:147–153. https://doi.org/10.1016/S0376-7388(02)00386-1

    Article  CAS  Google Scholar 

  73. Woong JC, Venkataramani S, Kim SC (2006) Modification of Nafion membrane using poly(4-vinyl pyridine) for direct methanol fuel cell. Polym Int 55:491–499. https://doi.org/10.1002/pi.1986

    Article  CAS  Google Scholar 

  74. Awuzie CI (2017) Conducting Polymers Mater Today Proc 4:5721–5726. https://doi.org/10.1016/j.matpr.2017.06.036

    Article  Google Scholar 

  75. Elschner A, Kirchmeyer S, Lovenich W et al (2010) PEDOT: Principles and applications of an intrinsically conductive polymer. CRC Press 1st Ed.: 377. https://doi.org/10.1201/b10318

  76. Kaloni TP, Giesbrecht PK, Schreckenbach G, Freund MS (2017) Polythiophene: From fundamental perspectives to applications. Chem Mater 29:10248–10283. https://doi.org/10.1021/acs.chemmater.7b03035

    Article  CAS  Google Scholar 

  77. Li L, Drillet JF, Mácová Z et al (2006) Poly(3,4-ethylenedioxythiophene)-modified nafion membrane for direct methanol fuel cells. Russ J Electrochem 42:1193–1201. https://doi.org/10.1134/S102319350611005X

    Article  CAS  Google Scholar 

  78. Smit MA, Ocampo AL, Espinosa-Medina MA, Sebastián PJ (2003) A modified Nafion membrane with in situ polymerized polypyrrole for the direct methanol fuel cell. J Power Sources 124:59–64. https://doi.org/10.1016/S0378-7753(03)00730-4

    Article  CAS  Google Scholar 

  79. Wang C-H, Chen C-C, Hsu H-C et al (2009) Low methanol-permeable polyaniline/Nafion composite membrane for direct methanol fuel cells. J Power Sources 190:279–284. https://doi.org/10.1016/j.jpowsour.2008.12.125

    Article  CAS  Google Scholar 

  80. Escudero-Cid R, Montiel M, Sotomayor L et al (2015) Evaluation of polyaniline-Nafion® composite membranes for direct methanol fuel cells durability tests. Int J Hydrogen Energy 40:8182–8192. https://doi.org/10.1016/j.ijhydene.2015.04.130

    Article  CAS  Google Scholar 

  81. Huang QM, Zhang QL, Huang HL et al (2008) Methanol permeability and proton conductivity of Nafion membranes modified electrochemically with polyaniline. J Power Sources 184:338–343. https://doi.org/10.1016/j.jpowsour.2008.06.013

    Article  CAS  Google Scholar 

  82. Schmidt C, Glück T, Schmidt-Naake G (2008) Modification of Nafion Membranes by Impregnation with Ionic Liquids. Chem Eng Technol 31:13–22. https://doi.org/10.1002/ceat.200700054

    Article  CAS  Google Scholar 

  83. Deligöz H, Yılmaztürk S, Karaca T et al (2009) Self-assembled polyelectrolyte multilayered films on Nafion with lowered methanol cross-over for DMFC applications. J Memb Sci 326:643–649. https://doi.org/10.1016/j.memsci.2008.10.055

    Article  CAS  Google Scholar 

  84. Guerrero-Gutiérrez EMA, Suleiman D (2013) Supercritical fluid CO 2 processing and counter ion substitution of nafion® membranes. J Appl Polym Sci 129:73–85. https://doi.org/10.1002/app.38689

    Article  CAS  Google Scholar 

  85. Suo C, Zhang W, Wang H, Yang F (2012) Modified Nafion polymer electrolyte membranes by γ-ray irradiation used in direct methanol fuel cells. J Shanghai Jiaotong Univ 17:579–585. https://doi.org/10.1007/s12204-012-1328-3

    Article  Google Scholar 

  86. Muhmed SA, Jaafar J, Daud SS et al (2021) Improvement in properties of nanocrystalline cellulose/poly (vinylidene fluoride) nanocomposite membrane for direct methanol fuel cell application. J Environ Chem Eng 9:105577. https://doi.org/10.1016/j.jece.2021.105577

    Article  CAS  Google Scholar 

  87. Kim Y-M, Park K-W, Choi J-H et al (2003) A Pd-impregnated nanocomposite Nafion membrane for use in high-concentration methanol fuel in DMFC. Electrochem commun 5:571–574. https://doi.org/10.1016/S1388-2481(03)00130-9

    Article  CAS  Google Scholar 

  88. Kim M, Ha D, Choi J (2019) Nanocellulose-modified Nafion 212 membrane for improving performance of vanadium redox flow batteries. Bull Korean Chem Soc 40:533–538. https://doi.org/10.1002/bkcs.11725

    Article  CAS  Google Scholar 

  89. Liang D, Wu C, Liu L et al (2023) High methanol tolerant proton exchange membranes based on novel coupling-type sulfonated poly(phenylquinoxaline) for direct methanol fuel cells. J Memb Sci 685:121920. https://doi.org/10.1016/j.memsci.2023.121920

    Article  CAS  Google Scholar 

  90. Wu J, Wang F, Fan X et al (2023) Phosphoric acid-doped Gemini quaternary ammonium-grafted SPEEK membranes with superhigh proton conductivity and mechanical strength for direct methanol fuel cells. J Memb Sci 672:121431. https://doi.org/10.1016/j.memsci.2023.121431

    Article  CAS  Google Scholar 

  91. Yan XH, Wu R, Xu JB et al (2016) A monolayer graphene – Nafion sandwich membrane for direct methanol fuel cells. J Power Sources 311:188–194. https://doi.org/10.1016/j.jpowsour.2016.02.030

    Article  CAS  Google Scholar 

  92. Li J, Xu G, Cai W et al (2018) Non-destructive modification on Nafion membrane via in-situ inserting of sheared graphene oxide for direct methanol fuel cell applications. Electrochim Acta 282:362–368. https://doi.org/10.1016/j.electacta.2018.06.072

    Article  CAS  Google Scholar 

  93. Li J, Fan K, Cai W et al (2016) An in-situ nano-scale swelling-filling strategy to improve overall performance of Nafion membrane for direct methanol fuel cell application. J Power Sources 332:37–41. https://doi.org/10.1016/j.jpowsour.2016.09.108

    Article  CAS  Google Scholar 

  94. Xu G, Li J, Ma L et al (2017) Performance dependence of swelling-filling treated Nafion membrane on nano-structure of macromolecular filler. J Memb Sci 534:68–72. https://doi.org/10.1016/j.memsci.2017.04.016

    Article  CAS  Google Scholar 

  95. Zhang Y, Li J, Ma L et al (2015) Recent developments on alternative proton exchange membranes: strategies for systematic performance improvement. Energy Technol 3:675–691. https://doi.org/10.1002/ente.201500028

    Article  CAS  Google Scholar 

  96. Byun SC, Jeong YJ, Park JW et al (2006) Effect of solvent and crystal size on the selectivity of ZSM-5/Nafion composite membranes fabricated by solution-casting method. Solid State Ionics 177:3233–3243. https://doi.org/10.1016/j.ssi.2006.09.014

    Article  CAS  Google Scholar 

  97. Li J, Yang X, Tang H, Pan M (2010) Durable and high performance Nafion membrane prepared through high-temperature annealing methodology. J Memb Sci 361:38–42. https://doi.org/10.1016/j.memsci.2010.06.016

    Article  CAS  Google Scholar 

  98. Vengatesan S, Cho E, Kim H-J, Lim T-H (2009) Effects of curing condition of solution cast Nafion® membranes on PEMFC performance. Korean J Chem Eng 26:679–684. https://doi.org/10.1007/s11814-009-0113-y

    Article  CAS  Google Scholar 

  99. Li L, Su L, Zhang Y (2012) Enhanced performance of supercritical CO2 treated Nafion 212 membranes for direct methanol fuel cells. Int J Hydrogen Energy 37:4439–4447. https://doi.org/10.1016/j.ijhydene.2011.11.110

    Article  CAS  Google Scholar 

  100. Zhang Yi, Jian Lu, Zhou H et al (2008) Application of nanoimprint technology in MEMS-based micro direct-methanol fuel cell (μ-DMFC). J Microelectromechanical Syst 17:1020–1028. https://doi.org/10.1109/JMEMS.2008.926979

    Article  CAS  Google Scholar 

  101. Yildirim MH, te Braake J, Aran HC et al (2010) Micro-patterned Nafion membranes for direct methanol fuel cell applications. J Memb Sci 349:231–236. https://doi.org/10.1016/j.memsci.2009.11.050

    Article  CAS  Google Scholar 

  102. Omosebi A, Besser RS (2011) Electron beam assisted patterning and dry etching of Nafion membranes. J Electrochem Soc 158:D603. https://doi.org/10.1149/1.3615938

    Article  CAS  Google Scholar 

  103. Omosebi A, Besser RS (2013) Electron beam patterned Nafion membranes for DMFC applications. J Power Sources 228:151–158. https://doi.org/10.1016/j.jpowsour.2012.11.076

    Article  CAS  Google Scholar 

  104. Cai Z, Li L, Su L, Zhang Y (2012) Supercritical carbon dioxide treated Nafion 212 commercial membranes for direct methanol fuel cells. Electrochem commun 14:9–12. https://doi.org/10.1016/j.elecom.2011.09.022

    Article  CAS  Google Scholar 

  105. Lin H-L, Yeh S-H, Yu TL, Chen L-C (2009) Silicate and zirconium phosphate modified Nafion/PTFE composite membranes for high temperature PEMFC. J Polym Res 16:519–527. https://doi.org/10.1007/s10965-008-9255-6

    Article  CAS  Google Scholar 

  106. Ling J, Savadogo O (2004) Comparison of methanol crossover among four types of Nafion membranes. J Electrochem Soc 151:A1604. https://doi.org/10.1149/1.1789394

    Article  CAS  Google Scholar 

  107. Okonkwo PC, Ben Belgacem I, Emori W, Uzoma PC (2021) Nafion degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review. Int J Hydrogen Energy 46:27956–27973. https://doi.org/10.1016/j.ijhydene.2021.06.032

    Article  CAS  Google Scholar 

  108. Lu GQ, Liu FQ, Wang C-Y (2005) Water Transport Through Nafion 112 Membrane in DMFCs. Electrochem Solid-State Lett 8:A1. https://doi.org/10.1149/1.1825312

    Article  CAS  Google Scholar 

  109. Liu Z, Guo B, Huang J et al (2006) Nano-TiO2-coated polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 157:207–211. https://doi.org/10.1016/j.jpowsour.2005.07.070

    Article  CAS  Google Scholar 

  110. Zhang H, Huang H, Shen PK (2012) Methanol-blocking Nafion composite membranes fabricated by layer-by-layer self-assembly for direct methanol fuel cells. Int J Hydrogen Energy 37:6875–6879. https://doi.org/10.1016/j.ijhydene.2012.01.066

    Article  CAS  Google Scholar 

  111. Ben Jadi S, El Guerraf A, Bazzaoui EA et al (2019) Synthesis, characterization, and transport properties of Nafion-polypyrrole membrane for direct methanol fuel cell (DMFC) application. J Solid State Electrochem 23:2423–2433. https://doi.org/10.1007/s10008-019-04355-w

    Article  CAS  Google Scholar 

  112. Gribov EN, Krivobokov IM, Parkhomchuk EV et al (2009) Transport properties of Nafion membranes modified with tetrapropylammonium ions for direct methanol fuel cell application. Russ J Electrochem 45:199–207. https://doi.org/10.1134/S1023193509020116

    Article  CAS  Google Scholar 

  113. Kang S, Bae G, Kim S-K et al (2018) Performance of a MEA using patterned membrane with a directly coated electrode by the bar-coating method in a direct methanol fuel cell. Int J Hydrogen Energy 43:11386–11396. https://doi.org/10.1016/j.ijhydene.2018.04.086

    Article  CAS  Google Scholar 

  114. Siroma Z, Fujiwara N, Ioroi T et al (2004) Dissolution of Nafion® membrane and recast Nafion® film in mixtures of methanol and water. J Power Sources 126:41–45. https://doi.org/10.1016/j.jpowsour.2003.08.024

    Article  CAS  Google Scholar 

  115. Elham OSJ, Kamarudin SK, Shaari N et al (2023) Development of low-cost Nafion-Lignin composite conductive membranes for application in direct methanol fuel cells. J Environ Chem Eng 111514. https://doi.org/10.1016/j.jece.2023.111514

  116. Lin H-L, Wang S-H (2014) Nafion/poly(vinyl alcohol) nano-fiber composite and Nafion/poly(vinyl alcohol) blend membranes for direct methanol fuel cells. J Memb Sci 452:253–262. https://doi.org/10.1016/j.memsci.2013.09.039

    Article  CAS  Google Scholar 

  117. Ng WW, Thiam HS, Pang YL et al (2023) Facile synthesis of nafion based self-healable proton exchange membranes for direct methanol fuel cells. Mater Today Proc 1–5. https://doi.org/10.1016/j.matpr.2023.01.407

  118. Ng WW, Thiam HS, Pang YL et al (2023) Freeze‐Thawed Nafion‐Poly(vinyl alcohol) self‐healing membranes for direct methanol fuel cells. Chem Eng Technol 1–9. https://doi.org/10.1002/ceat.202300099

  119. DeLuca NW, Elabd YA (2006) Direct methanol fuel cell performance of Nafion®/poly(vinyl alcohol) blend membranes. J Power Sources 163:386–391. https://doi.org/10.1016/j.jpowsour.2006.09.009

    Article  CAS  Google Scholar 

  120. Yuan C, Li Q, Dong Y et al (2023) Click chemistry-based azide-substituted polysulfone/alkynyl-substituted sulfonated polyvinyl alcohol/nafion blend membranes for direct methanol fuel cells. J Polym Sci 1–11. https://doi.org/10.1002/pol.20230509

  121. Ru C, Gu Y, Duan Y et al (2019) Enhancement in proton conductivity and methanol resistance of Nafion membrane induced by blending sulfonated poly(arylene ether ketones) for direct methanol fuel cells. J Memb Sci 573:439–447. https://doi.org/10.1016/j.memsci.2018.12.030

    Article  CAS  Google Scholar 

  122. Wang S-H, Lin H-L (2014) Poly (vinylidene fluoride-co-hexafluoropropylene)/polybenzimidazole blend nanofiber supported Nafion membranes for direct methanol fuel cells. J Power Sources 257:254–263. https://doi.org/10.1016/j.jpowsour.2014.01.104

    Article  CAS  Google Scholar 

  123. Lin J-C, Ouyang M, Fenton JM et al (1998) Study of blend membranes consisting of NafionR and vinylidene fluoride-hexafluoropropylene copolymer. J Appl Polym Sci 70:121–127. https://doi.org/10.1002/(SICI)1097-4628(19981003)70:1%3c121::AID-APP12%3e3.0.CO;2-A

    Article  CAS  Google Scholar 

  124. Dutta K, Das S, Kundu PP (2016) Highly methanol resistant and selective ternary blend membrane composed of sulfonated PVdF - HFP, sulfonated polyaniline and nafion. J Appl Polym Sci 133:1–10. https://doi.org/10.1002/app.43294

    Article  CAS  Google Scholar 

  125. Hasani-Sadrabadi MM, Dashtimoghadam E, Nasseri R et al (2014) Cellulose nanowhiskers to regulate the microstructure of perfluorosulfonate ionomers for high-performance fuel cells. J Mater Chem A 2:11334. https://doi.org/10.1039/c4ta00635f

    Article  CAS  Google Scholar 

  126. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116:2658–2667. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  127. Gloukhovski R, Tsur Y, Freger V (2017) A Nafion-filled Polycarbonate Track-Etched Composite Membrane with Enhanced Selectivity for Direct Methanol Fuel Cells. Fuel Cells 17:56–66. https://doi.org/10.1002/fuce.201600154

    Article  CAS  Google Scholar 

  128. Ma C-CM, Hsiao Y-H, Lin Y-F et al (2008) Effects and properties of various molecular weights of poly(propylene oxide) oligomers/Nafion® acid–base blend membranes for direct methanol fuel cells. J Power Sources 185:846–852. https://doi.org/10.1016/j.jpowsour.2008.06.089

    Article  CAS  Google Scholar 

  129. Li J, Bu F, Ru C et al (2020) Enhancing the selectivity of Nafion membrane by incorporating a novel functional skeleton molecule to improve the performance of direct methanol fuel cells. J Mater Chem A 8:196–206. https://doi.org/10.1039/c9ta10215a

    Article  CAS  Google Scholar 

  130. Lu J, Tang H, Xu C, Jiang SP (2012) Nafion membranes with ordered mesoporous structure and high water retention properties for fuel cell applications. J Mater Chem 22:5810. https://doi.org/10.1039/c2jm14838b

    Article  CAS  Google Scholar 

  131. Cai W, Fan K, Li J et al (2016) A bi-functional polymeric nano-sieve Nafion composite membrane: Improved performance for direct methanol fuel cell applications. Int J Hydrogen Energy 41:17102–17111. https://doi.org/10.1016/j.ijhydene.2016.07.128

    Article  CAS  Google Scholar 

  132. Shen L, Sun Z, Chu Y et al (2015) Novel sulfonated Nafion®-based composite membranes with pillararene as selective artificial proton channels for application in direct methanol fuel cells. Int J Hydrogen Energy 40:13071–13079. https://doi.org/10.1016/j.ijhydene.2015.07.073

    Article  CAS  Google Scholar 

  133. Nguyen T, Wang X (2010) Multifunctional composite membrane based on a highly porous polyimide matrix for direct methanol fuel cells. J Power Sources 195:1024–1030. https://doi.org/10.1016/j.jpowsour.2009.08.049

    Article  CAS  Google Scholar 

  134. Choi J, Kim IT, Kim SC, Hong YT (2005) Nafion-sulfonated poly(arylene ether sulfone) composite membrane for direct methanol fuel cell. Macromol Res 13:514–520. https://doi.org/10.1007/BF03218489

    Article  CAS  Google Scholar 

  135. Wu W, Zhou Z, Wang Y et al (2022) Manipulating the ionic nanophase of Nafion by in-situ precise hybridization with polymer quantum dot towards highly enhanced fuel cell performances. Nano Res 15:4124–4131. https://doi.org/10.1007/s12274-022-4073-4

    Article  CAS  Google Scholar 

  136. Kang DH, Kim D (2007) Modification of Nafion membranes by incorporation of cationic polymers for reduction of methanol permeability. Korean J Chem Eng 24:1101–1105. https://doi.org/10.1007/s11814-007-0128-1

    Article  CAS  Google Scholar 

  137. Chen WF, Shen YC, Hsu HM, Kuo PL (2012) Continuous channels created by self-assembly of ionic cross-linked polysiloxane-Nafion nanocomposites. Polym Chem 3:1991–1995. https://doi.org/10.1039/c2py20203d

    Article  CAS  Google Scholar 

  138. Zhang H, Xia H, Zhao Y (2012) Poly(vinyl alcohol) Hydrogel Can Autonomously Self-Heal. ACS Macro Lett 1:1233–1236. https://doi.org/10.1021/mz300451r

    Article  CAS  PubMed  Google Scholar 

  139. Thiam HS, Daud WRW, Kamarudin SK et al (2013) Performance of direct methanol fuel cell with a palladium-silica nanofibre/Nafion composite membrane. Energy Convers Manag 75:718–726. https://doi.org/10.1016/j.enconman.2013.08.009

    Article  CAS  Google Scholar 

  140. Li J, Xu G, Luo X et al (2018) Effect of nano-size of functionalized silica on overall performance of swelling-filling modified Nafion membrane for direct methanol fuel cell application. Appl Energy 213:408–414. https://doi.org/10.1016/j.apenergy.2018.01.052

    Article  CAS  Google Scholar 

  141. Wang H, Li X, Zhuang X et al (2017) Modification of Nafion membrane with biofunctional SiO2 nanofiber for proton exchange membrane fuel cells. J Power Sources 340:201–209. https://doi.org/10.1016/j.jpowsour.2016.11.072

    Article  CAS  Google Scholar 

  142. Garnica Rodriguez JI, Dicks AL, Duke MC, Diniz Da Costa JC (2006) Silica nafion modified composite membranes for direct methanol fuel cells. Dev Chem Eng Miner Process 14:119–131. https://doi.org/10.1002/apj.5500140109

    Article  Google Scholar 

  143. Jia W, Feng K, Tang B, Wu P (2015) β-Cyclodextrin modified silica nanoparticles for Nafion based proton exchange membranes with significantly enhanced transport properties. J Mater Chem A 3:15607–15615. https://doi.org/10.1039/C5TA03381K

    Article  CAS  Google Scholar 

  144. Yang CW, Chen KH, Cheng S (2016) Effect of pore-directing agents and silanol groups in mesoporous silica nanoparticles as Nafion fillers on the performance of DMFCs. RSC Adv 6:111666–111680. https://doi.org/10.1039/C6RA24210C

    Article  CAS  Google Scholar 

  145. Cozzi D, de Bonis C, D’Epifanio A et al (2014) Organically functionalized titanium oxide/Nafion composite proton exchange membranes for fuel cells applications. J Power Sources 248:1127–1132. https://doi.org/10.1016/j.jpowsour.2013.10.070

    Article  CAS  Google Scholar 

  146. Ercelik M, Ozden A, Devrim Y, Colpan CO (2017) Investigation of Nafion based composite membranes on the performance of DMFCs. Int J Hydrogen Energy 42:2658–2668. https://doi.org/10.1016/j.ijhydene.2016.06.215

    Article  CAS  Google Scholar 

  147. Sigwadi R, Mokrani T, Dhlamini MS et al (2019) Nafion®/ sulfated zirconia oxide-nanocomposite membrane: the effects of ammonia sulfate on fuel permeability. J Polym Res 26:108. https://doi.org/10.1007/s10965-019-1760-2

    Article  CAS  Google Scholar 

  148. Sigwadi R, Mokrani T, Dhlamini S, Msomi PF (2021) Nafion® reinforced with polyacrylonitrile/ ZrO2 nanofibers for direct methanol fuel cell application. J Appl Polym Sci. https://doi.org/10.1002/app.49978

    Article  Google Scholar 

  149. Nicotera I, Khalfan A, Goenaga G et al (2008) NMR investigation of water and methanol mobility in nanocomposite fuel cell membranes. Ionics (Kiel) 14:243–253. https://doi.org/10.1007/s11581-007-0178-8

    Article  CAS  Google Scholar 

  150. Hou H, Sun G, Wu Z et al (2008) Zirconium phosphate/Nafion115 composite membrane for high-concentration DMFC. Int J Hydrogen Energy 33:3402–3409. https://doi.org/10.1016/j.ijhydene.2008.03.060

    Article  CAS  Google Scholar 

  151. Casciola M, Bagnasco G, Donnadio A et al (2009) Conductivity and Methanol Permeability of Nafion-Zirconium Phosphate Composite Membranes Containing High Aspect Ratio Filler Particles. Fuel Cells 9:394–400. https://doi.org/10.1002/fuce.200800135

    Article  CAS  Google Scholar 

  152. Jia W, Tang B, Wu P (2017) Novel Composite Proton Exchange Membrane with Connected Long-Range Ionic Nanochannels Constructed via Exfoliated Nafion-Boron Nitride Nanocomposite. ACS Appl Mater Interfaces 9:14791–14800. https://doi.org/10.1021/acsami.7b00858

    Article  CAS  PubMed  Google Scholar 

  153. Choi BG, Huh YS, Park YC et al (2012) Enhanced transport properties in polymer electrolyte composite membranes with graphene oxide sheets. Carbon N Y 50:5395–5402. https://doi.org/10.1016/j.carbon.2012.07.025

    Article  CAS  Google Scholar 

  154. Gagliardi GG, El-Kharouf A, Borello D (2023) Assessment of innovative graphene oxide composite membranes for the improvement of direct methanol fuel cells performance. Fuel 345:128252. https://doi.org/10.1016/j.fuel.2023.128252

    Article  CAS  Google Scholar 

  155. Chien H-C, Tsai L-D, Huang C-P et al (2013) Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells. Int J Hydrogen Energy 38:13792–13801. https://doi.org/10.1016/j.ijhydene.2013.08.036

    Article  CAS  Google Scholar 

  156. Prapainainar P, Pattanapisutkun N, Prapainainar C, Kongkachuichay P (2019) Incorporating graphene oxide to improve the performance of Nafion-mordenite composite membranes for a direct methanol fuel cell. Int J Hydrogen Energy 44:362–378. https://doi.org/10.1016/j.ijhydene.2018.08.008

    Article  CAS  Google Scholar 

  157. Ng WW, Thiam HS, Pang YL et al (2023) Self-sustainable, self-healable sulfonated graphene oxide incorporated nafion/poly(vinyl alcohol) proton exchange membrane for direct methanol fuel cell applications. J Environ Chem Eng 11:111151. https://doi.org/10.1016/j.jece.2023.111151

    Article  CAS  Google Scholar 

  158. Parthiban V, Akula S, Peera SG et al (2016) Proton Conducting Nafion-Sulfonated Graphene Hybrid Membranes for Direct Methanol Fuel Cells with Reduced Methanol Crossover. Energy Fuels 30:725–734. https://doi.org/10.1021/acs.energyfuels.5b02194

    Article  CAS  Google Scholar 

  159. Feng K, Tang B, Wu P (2014) Sulfonated graphene oxide–silica for highly selective Nafion-based proton exchange membranes. J Mater Chem A 2:16083–16092. https://doi.org/10.1039/C4TA03207A

    Article  CAS  Google Scholar 

  160. Park Y-S, Yamazaki Y (2005) Low methanol permeable and high proton-conducting Nafion/calcium phosphate composite membrane for DMFC. Solid State Ionics 176:1079–1089. https://doi.org/10.1016/j.ssi.2004.12.012

    Article  CAS  Google Scholar 

  161. Park Y-S, Yamazaki Y (2006) Low water/methanol permeable Nafion/CHP organic–inorganic composite membrane with high crystallinity. Eur Polym J 42:375–387. https://doi.org/10.1016/j.eurpolymj.2005.07.018

    Article  CAS  Google Scholar 

  162. Hamid NSA, Kamarudin SK, Karim NA (2021) Potential of Nafion/eggshell composite membrane for application in direct methanol fuel cell. Int J Energy Res 45:2245–2264. https://doi.org/10.1002/er.5917

    Article  CAS  Google Scholar 

  163. Yildirim MH, Curòs AR, Motuzas J et al (2009) Nafion®/H-ZSM-5 composite membranes with superior performance for direct methanol fuel cells. J Memb Sci 338:75–83. https://doi.org/10.1016/j.memsci.2009.04.009

    Article  CAS  Google Scholar 

  164. Zhang Z, Désilets F, Felice V et al (2011) On the proton conductivity of Nafion-Faujasite composite membranes for low temperature direct methanol fuel cells. J Power Sources 196:9176–9187. https://doi.org/10.1016/j.jpowsour.2011.07.009

    Article  CAS  Google Scholar 

  165. Chen Z, Holmberg B, Li W et al (2006) Nafion/Zeolite Nanocomposite Membrane by in Situ Crystallization for a Direct Methanol Fuel Cell. Chem Mater 18:5669–5675. https://doi.org/10.1021/cm060841q

    Article  CAS  Google Scholar 

  166. Park Y-S, Yamazaki Y (2005) Novel Nafion/Hydroxyapatite composite membrane with high crystallinity and low methanol crossover for DMFCs. Polym Bull 53:181–192. https://doi.org/10.1007/s00289-004-0310-0

    Article  CAS  Google Scholar 

  167. Hasani-Sadrabadi MM, Dashtimoghadam E, Majedi FS et al (2010) Novel high-performance nanohybrid polyelectrolyte membranes based on bio-functionalized montmorillonite for fuel cell applications. Chem Commun 46:6500. https://doi.org/10.1039/c0cc01125h

    Article  CAS  Google Scholar 

  168. Hasani-Sadrabadi MM, Ghaffarian SR, Renaud P (2013) Nafion/benzotriazole functionalized montmorillonite nanocomposites: novel high-performance proton exchange membranes. RSC Adv 3:19357. https://doi.org/10.1039/c3ra42142b

    Article  CAS  Google Scholar 

  169. Rhee CH, Kim HK, Chang H, Lee JS (2005) Nafion/Sulfonated Montmorillonite Composite: A New Concept Electrolyte Membrane for Direct Methanol Fuel Cells. Chem Mater 17:1691–1697. https://doi.org/10.1021/cm048058q

    Article  CAS  Google Scholar 

  170. Felice C, Ye S, Qu D (2010) Nafion−Montmorillonite Nanocomposite Membrane for the Effective Reduction of Fuel Crossover. Ind Eng Chem Res 49:1514–1519. https://doi.org/10.1021/ie901600a

    Article  CAS  Google Scholar 

  171. Bae G-N, Kim H-W, Jung E-M et al (2023) Effects on the electrochemical performance of surface-modified mordenite in a PTFE Nafion composite membrane for direct methanol fuel cells. Int J Hydrogen Energy 48:18879–18889. https://doi.org/10.1016/j.ijhydene.2023.02.001

    Article  CAS  Google Scholar 

  172. Prapainainar P, Du Z, Kongkachuichay P et al (2017) Mordenite/Nafion and analcime/Nafion composite membranes prepared by spray method for improved direct methanol fuel cell performance. Appl Surf Sci 421:24–41. https://doi.org/10.1016/j.apsusc.2017.02.004

    Article  CAS  Google Scholar 

  173. Prapainainar P, Theampetch A, Kongkachuichay P et al (2015) Effect of solution casting temperature on properties of nafion composite membrane with surface modified mordenite for direct methanol fuel cell. Surf Coatings Technol 271:63–73. https://doi.org/10.1016/j.surfcoat.2015.01.021

    Article  CAS  Google Scholar 

  174. Meenakshi S, Sahu AK, Bhat SD et al (2013) Mesostructured-aluminosilicate-Nafion hybrid membranes for direct methanol fuel cells. Electrochim Acta 89:35–44. https://doi.org/10.1016/j.electacta.2012.11.003

    Article  CAS  Google Scholar 

  175. Wang Z, Ren J, Sun Y et al (2022) Fluorinated strategy of node structure of Zr-based MOF for construction of high-performance composite polymer electrolyte membranes. J Memb Sci 645:120193. https://doi.org/10.1016/j.memsci.2021.120193

    Article  CAS  Google Scholar 

  176. Rao Z, Tang B, Wu P (2017) Proton Conductivity of Proton Exchange Membrane Synergistically Promoted by Different Functionalized Metal-Organic Frameworks. ACS Appl Mater Interfaces 9:22597–22603. https://doi.org/10.1021/acsami.7b05969

    Article  CAS  PubMed  Google Scholar 

  177. Rao Z, Feng K, Tang B, Wu P (2017) Construction of well interconnected metal-organic framework structure for effectively promoting proton conductivity of proton exchange membrane. J Memb Sci 533:160–170. https://doi.org/10.1016/j.memsci.2017.03.031

    Article  CAS  Google Scholar 

  178. Wei Y, Matar S, Shen L et al (2012) A novel membrane for DMFC – Na 2 Ti 3 O 7 Nanotubes/Nafion® composite membrane: Performances studies. Int J Hydrogen Energy 37:1857–1864. https://doi.org/10.1016/j.ijhydene.2011.08.107

    Article  CAS  Google Scholar 

  179. Li L, Zhang Y, Drillet J-F et al (2007) Preparation and characterization of Pt direct deposition on polypyrrole modified Nafion composite membranes for direct methanol fuel cell applications. Chem Eng J 133:113–119. https://doi.org/10.1016/j.cej.2007.02.008

    Article  CAS  Google Scholar 

  180. Park H, Kim Y, Choi YS et al (2008) Surface chemistry and physical properties of Nafion/polypyrrole/Pt composite membrane prepared by chemical in situ polymerization for DMFC. J Power Sources 178:610–619. https://doi.org/10.1016/j.jpowsour.2007.08.050

    Article  CAS  Google Scholar 

  181. Kim D, Sauk J, Byun J et al (2007) Palladium composite membranes using supercritical CO2 impregnation method for direct methanol fuel cells. Solid State Ionics 178:865–870. https://doi.org/10.1016/j.ssi.2007.02.034

    Article  CAS  Google Scholar 

  182. Brandão L, Rodrigues J, Madeira LM, Mendes A (2010) Methanol crossover reduction by Nafion modification with palladium composite nanoparticles: Application to direct methanol fuel cells. Int J Hydrogen Energy 35:11561–11567. https://doi.org/10.1016/j.ijhydene.2010.04.096

    Article  CAS  Google Scholar 

  183. Thiam HS, Daud WRW, Kamarudin SK et al (2013) Nafion/Pd–SiO2 nanofiber composite membranes for direct methanol fuel cell applications. Int J Hydrogen Energy 38:9474–9483. https://doi.org/10.1016/j.ijhydene.2012.11.141

    Article  CAS  Google Scholar 

  184. Jung E, Jung U, Yang T et al (2007) Methanol crossover through PtRu/Nafion composite membrane for a direct methanol fuel cell. Int J Hydrogen Energy 32:903–907. https://doi.org/10.1016/j.ijhydene.2006.12.014

    Article  CAS  Google Scholar 

  185. Parthiban V, Panda SK, Sahu AK (2018) Highly fluorescent carbon quantum dots-Nafion as proton selective hybrid membrane for direct methanol fuel cells. Electrochim Acta 292:855–864. https://doi.org/10.1016/j.electacta.2018.09.193

    Article  CAS  Google Scholar 

  186. Parthiban V, Akula S, Sahu AK (2017) Surfactant templated nanoporous carbon-Nafion hybrid membranes for direct methanol fuel cells with reduced methanol crossover. J Memb Sci 541:127–136. https://doi.org/10.1016/j.memsci.2017.06.081

    Article  CAS  Google Scholar 

  187. Hasani-Sadrabadi MM, Dashtimoghadam E, Majedi FS et al (2013) Nafion/chitosan-wrapped CNT nanocomposite membrane for high-performance direct methanol fuel cells. RSC Adv 3:7337–7346. https://doi.org/10.1039/c3ra40480c

    Article  CAS  Google Scholar 

  188. Tohidian M, Ghaffarian SR (2018) Surface modified multi-walled carbon nanotubes and Nafion nanocomposite membranes for use in fuel cell applications. Polym Adv Technol 29:1219–1226. https://doi.org/10.1002/pat.4232

    Article  CAS  Google Scholar 

  189. Jia W, Tang B, Wu P (2018) Carbon dots with multi-functional groups and the application in proton exchange membranes. Electrochim Acta 260:92–100. https://doi.org/10.1016/j.electacta.2017.11.047

    Article  CAS  Google Scholar 

  190. Wang F, Zuo Z, Li L et al (2019) Large-Area Aminated-Graphdiyne Thin Films for Direct Methanol Fuel Cells. Angew Chemie Int Ed 58:15010–15015. https://doi.org/10.1002/anie.201910588

    Article  CAS  Google Scholar 

  191. Velayutham P, Sahu AK (2018) Graphitic Carbon Nitride Nanosheets—Nafion as a Methanol Barrier Hybrid Membrane for Direct Methanol Fuel Cells. J Phys Chem C 122:21735–21744. https://doi.org/10.1021/acs.jpcc.8b06042

    Article  CAS  Google Scholar 

  192. Chang CM, Li HY, Lai JY, Liu YL (2013) Nanocomposite membranes of Nafion and Fe3O4-anchored and Nafion-functionalized multiwalled carbon nanotubes exhibiting high proton conductivity and low methanol permeability for direct methanol fuel cells. RSC Adv 3:12895–12904. https://doi.org/10.1039/c3ra40438b

    Article  CAS  Google Scholar 

  193. Hasanabadi N, Ghaffarian SR, Hasani-Sadrabadi MM (2013) Nafion-based magnetically aligned nanocomposite proton exchange membranes for direct methanol fuel cells. Solid State Ionics 232:58–67. https://doi.org/10.1016/j.ssi.2012.11.015

    Article  CAS  Google Scholar 

  194. Liang ZX, Shi JY, Liao SJ, Zeng JH (2010) Noble metal nanowires incorporated Nafion® membranes for reduction of methanol crossover in direct methanol fuel cells. Int J Hydrogen Energy 35:9182–9185. https://doi.org/10.1016/j.ijhydene.2010.06.054

    Article  CAS  Google Scholar 

  195. Cao L, Wang X, Meziani MJ et al (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129:11318–11319. https://doi.org/10.1021/ja073527l

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Dong Y, Shao J, Chen C et al (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon N Y 50:4738–4743. https://doi.org/10.1016/j.carbon.2012.06.002

    Article  CAS  Google Scholar 

  197. Dong Y, Wang R, Li H et al (2012) Polyamine-functionalized carbon quantum dots for chemical sensing. Carbon N Y 50:2810–2815. https://doi.org/10.1016/j.carbon.2012.02.046

    Article  CAS  Google Scholar 

  198. Reed D, Thomsen E, Wang W et al (2015) Performance of Nafion® N115, Nafion® NR-212, and Nafion® NR-211 in a 1 kW class all vanadium mixed acid redox flow battery. J Power Sources 285:425–430. https://doi.org/10.1016/j.jpowsour.2015.03.099

    Article  CAS  Google Scholar 

  199. Karimi MB, Mohammadi F, Hooshyari K (2019) Recent approaches to improve Nafion performance for fuel cell applications: A review. Int J Hydrogen Energy 44:28919–28938. https://doi.org/10.1016/j.ijhydene.2019.09.096

    Article  CAS  Google Scholar 

  200. Zhou J, Cao J, Zhang Y et al (2021) Overcoming undesired fuel crossover: Goals of methanol-resistant modification of polymer electrolyte membranes. Renew Sustain Energy Rev 138:110660. https://doi.org/10.1016/j.rser.2020.110660

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is fully supported by the grants from Jiangsu Natural Science Foundation (No. BK20231323), State Key Laboratory of Engines at Tianjin University (No. K2020–14), and High-Tech Research Key Laboratory of Zhenjiang City (No. SS2018002). We also want to thank Professor Weiqi Zhang, Professor Huaneng Su, Dr. Divya Kumar, Professor Huiyuan Liu [Jiangsu University], Professor Lei Xing [University of Surrey] and Professor Xiaohui Yan [Shanghai Jiao Tong University] for their supports.

Funding

Jiangsu Natural Science Foundation, BK20231323, Qian Xu; State Key Laboratory of Engines at Tianjin University, K2020–14, Qian Xu; High-Tech Research Key Laboratory of Zhenjiang, SS2018002, Qian Xu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• New advancements in Nafion-based commercial and non-commercial membranes are reviewed.

• Additives application in these membranes and their connections with Nafion are given.

• The future prospects for the improvement of Nafion membranes are discussed.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 10768 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asghar, M., Xu, Q. A review of advancements in commercial and non-commercial Nafion-based proton exchange membranes for direct methanol fuel cells. J Polym Res 31, 125 (2024). https://doi.org/10.1007/s10965-024-03964-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03964-y

Keywords

Navigation