Skip to main content

Advertisement

Log in

Synergetic enhancement of the electrical-thermal-mechanical properties of EPDM composites modified by Kaolin and BNNSs

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Offshore wind power is clean energy with rapid growth in recent years. As a key part of wind turbines, improving the combination performance of wind turbine cable insulation has a crucial impact on the development of wind power systems. In this paper, kaolin is selected to improve the tensile strength of Ethylene-Propylene-Diene Monomer (EPDM) rubber, and Boron Nitride Nanosheeets (BNNSs) with good electrical insulation and thermal conductivity are co-doped into kaolin/EPDM to improve the breakdown strength and thermal conductivity of the composite. The results show that the properties of the composites are improved when the powders are doped into EPDM. When the kaolin doping amount is 30wt%, the dielectric properties and the mechanical properties are improved, but the breakdown strength has deteriorated. Based on 30wt% kaolin content, BNNSs are added to EPDM. The breakdown strength is improved. The breakdown strength of the 30wt% Kaolin/5wt%BNNSs co-doped EPDM is 83.33 kV/mm. In addition, due to the synergistic effect between the two powders, the tensile strength of the composite is increased to 8.06 MPa. Meanwhile, with the increase of BNNSs, the thermal conductivity of composite is improved. It increases to 1.247 W/(m⋅K) This work has important guiding significance for improving the combination performance of the wind turbine cable insulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Xu Y, Yang K, Zhao G (2021) The influencing factors and hierarchical relationships of offshore wind power industry in China, Environ Sci. Pollut R 28:52329–52344

    Article  Google Scholar 

  2. Li J, Wang G, Li Z, Yang S et al (2020) A review on development of offshore wind energy conversion system. Int J Energ Res 44(12):9283–9297

    Article  Google Scholar 

  3. Lian J, Cai O, Dong X et al (2019) Health Monitoring and Safety evaluation of the Offshore wind turbine structure: a review and discussion of Future Development. Sustainability-Basel 11(2):494

    Article  Google Scholar 

  4. Zhang J, Cai L, Ma L (2017) Energy performance of wind power in China: a comparison among inland, coastal and offshore wind farms. J Clean Prod 143:836–842

    Article  Google Scholar 

  5. Fernández-Guillamón A, Das K, Cutululis A et al (2019) Offshore wind power integration into Future Power systems: Overview and Trends. J Mar Sci Eng 7(11):399

    Article  Google Scholar 

  6. Akhtar N, Geyer B, Rockel B et al (2021) Accelerating deployment of offshore wind energy alter wind climate and reduce future power generation potentials. Sci Rep -UK 11(1):11826

    Article  CAS  Google Scholar 

  7. Jansen M, Staffell I, Kitzing L et al (2020) Offshore wind competitiveness in mature markets without subsidy. Nat Energy 5(8):614–622

    Article  Google Scholar 

  8. He J (2017) Chen G (2021) Insulation materials for HVDC polymeric cables. IEEE T Dielect El In 24(3):1307–1307

    Article  Google Scholar 

  9. Surya I, Muniyadi M, Ismail H A review on clay-reinforced ethylene propylene diene terpolymer composites. Polym Compos 42(4):1698–1711

  10. Pirityi DZ, Pölöskei K (2021) Thermomechanical Devulcanisation of Ethylene propylene Diene Monomer (EPDM) Rubber and its subsequent reintegration into Virgin Rubber. Polymers-Basel 13(7):1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chi Q, Hao Y, Zhang T et al (2018) Study on nonlinear conductivity and breakdown characteristics of zinc oxide–hexagonal boron nitride/EPDM composites. J Mater Sci-Mater El 29:19678–19688

    Article  CAS  Google Scholar 

  12. Hamzah MS, Jaafar M, Mohd Jamil MK (2014) Electrical insulation characteristics of alumina, titania, and organoclay nanoparticles filled PP/EPDM nanocomposites. J Appl Polym Sci 131(23)

  13. Ali M, Choudhry MA (2015) Preparation and characterization of EPDM-silica nano/micro composites for high voltage insulation applications. Mater Sci-Poland 33(1):213–219

    Article  CAS  Google Scholar 

  14. Airinei A, Asandulesa M, Stelescu MD, Tudorachi N, Fifere N, Bele A, Musteata V (2021) Dielectric, thermal and water absorption properties of some EPDM/Flax Fiber composites vol Z13:Polymers-Basel, p 2555. 15

    Google Scholar 

  15. Naskar AK, Keum JK, Boeman RG (2016) Polymer matrix nanocomposites for automotive structural components. Nat Nanotechnol 11:1026–1030

    Article  CAS  PubMed  Google Scholar 

  16. Ciofani G, Raffa V, Menciassi A, Cuschieri A (2008) Cytocompatibility, interactions, and uptake of polyethyleneimine-coated boron nitride nanotubes by living cells: confirmation of their potential for biomedical applications. Biotechnol Bioeng 101:850–858

    Article  CAS  PubMed  Google Scholar 

  17. Chen X (2009) Boron Nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J Am Chem Soc 131:890–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yurdakul H, GöncüY, Durukan O, Akay A, Seyhan A, T, Ay N, Turan S (2012) Nanoscopic characterization of two-dimensional (2D) boron nitride nanosheets (BNNSs) produced by microfluidization. Ceram Int 38(3):2187–2193

    Article  CAS  Google Scholar 

  19. Jang SK, Youn J, Song YJ, Lee S (2016) Synthesis and characterization of hexagonal boron nitride as a gate dielectric. Sci Rep 6:30449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boldrin L, Scarpa F, Chowdhury R, Adhikari S (2011) Effective mechanical properties of hexagonal boron nitride nanosheets. Nanotechnology 22:505702

    Article  CAS  PubMed  Google Scholar 

  21. Li LH, Cervenka J, Watanabe K, Taniguchi T, Chen Y (2014) Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 8:1457–1462

    Article  CAS  PubMed  Google Scholar 

  22. Wang W, Sun G, Chen Y, Sun X, Bi J (2018) Preparation and mechanical properties of boron nitride nanosheets/alumina composites. Ceram Int 44(17):21993–21997

    Article  CAS  Google Scholar 

  23. Pelka WJB, Knapp M, Szyszko T (2002) Podsiadlo.Lattice parameters and anisotropic thermal expansion of hexagonal boron nitride in the 10–297.5 K temperature range. Appl Phys a Mater Sci Process 75:431–435

    Article  Google Scholar 

  24. Paszkowicz W, Meng, Huang Y, Fu Y, Wang Z, Zhi C (2014) Polymer composites of boron nitride nanotubes and nanosheets. J Mater Chem C 2:10049–10061

    Article  Google Scholar 

  25. Liang G, Sun G, Bi J, Wang W, Yang X, Li Y (2020) Mechanical and dielectric properties of functionalized boron nitride nanosheets/silicon nitride composites. Ceram Int 47(2):2058–2067

    Article  Google Scholar 

  26. Weng Q, Wang X, Wang X, Bando Y, Golberg D (2016) Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem Soc Rev 45:3989–4012

    Article  CAS  PubMed  Google Scholar 

  27. Li GC, Zhou XG, Li XJ, Wei YH (2020) DC breakdown characteristics of XLPE/BNNS nanocomposites considering BN nanosheet concentration, space charge and temperature. High Volt 5(3):280–286

    Article  CAS  Google Scholar 

  28. Li M, Wang M, Hou X, Zhan Z, Wang H, Fu H (2020) Highly thermal conductive and electrical insulating polymer composites with boron nitride. Compos Part B-Eng 184:107746

    Article  CAS  Google Scholar 

  29. Jarvid M, Johansson A, Kroon R et al (2014) A New Application Area for fullerenes: Voltage stabilizers for Power Cable Insulation. Adv Mater 27(5):897–902

    Article  PubMed  Google Scholar 

  30. Yao T, Zhou W, Peng W, Zhou J, Li T, Wu H, Zheng J (2022) Insights into concomitant enhancements of dielectric properties and thermal conductivity of PVDF composites filled with core@double-shell structured Zn@ZnO@PS particles. J Appl Polym Sci 139(44):53069

    Article  Google Scholar 

  31. Yao T, Zhou W, Cao G, Peng W, Liu J, Dong X, Chen X (2023) Engineering of core@double-shell structured Zn@ZnO@PS particles in poly (vinylidene fluoride) composites towards significantly enhanced dielectric performances. J Appl Polym Sci 140(17):53772

    Article  Google Scholar 

  32. Zhou W, Cao G, Yuan M, Zhong S, Wang Y, Liu X, Cao D, Peng W, Liu J, Wang G, Dang Z, Li B (2023) Core-shell engineering of conductive fillers toward enhanced dielectric properties: a universal polarization mechanism in polymer conductor composites. Adv Mater 35(2):2207829

    Article  CAS  Google Scholar 

  33. Sahyoun J, Crepet A, Gouanve F, Keromnes L, Espuche E (2016) Diffusion mechanism of byproducts resulting from the peroxide crosslinking of polyethylene. J Appl Polym Sci 134(9):44525

    Article  Google Scholar 

  34. Roger C, Hamedi H, Woodward WH, Lanagan M (2020) Thermally stimulated depolarization current spectra of cross-linked polyethylene and the influence of cross-linking byproducts. J Polym Sci 58(22):3142–3152

    Article  Google Scholar 

  35. O’Dwyer JJ (1973) The theory of electrical conduction and breakdown in solid dielectrics. Oxford Clarendon Press. 206

  36. Shao C, Wang Q, Mao Y, Li Q, Wu C (2019) Influence of carbon nanotubes content on the properties of acrylonitrile-butadiene rubber/cobalt chloride composites. Mater Res Express 6(7)

  37. Duan Q, Wang J, Ren Q, Li K, Zhang Z, Wang Y (2018) Effect of adding carbon fiber on conductive stability of acrylonitrile-butadiene rubber composites. J Appl Polym Sci 135:46668

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (52277153).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guochang Li.

Ethics declarations

Conflict of interest

The authors hereby declare that they have no competing interests as defined by Springer or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, H., Deng, W., Xiao, C. et al. Synergetic enhancement of the electrical-thermal-mechanical properties of EPDM composites modified by Kaolin and BNNSs. J Polym Res 31, 23 (2024). https://doi.org/10.1007/s10965-024-03872-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-024-03872-1

Keywords

Navigation