Skip to main content
Log in

Highly reactive polyisobutylene through cationic polymerization of isobutylene

  • Review paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Highly reactive polyisobutylene (HRPIB) is the most important industrial polymeric material used as additives for lubricants, fuels and polymers. HRPIB is olefin terminated polymer preferred over conventional polyisobutylene due to its reactive nature. Present review covers synthetic processes of HRPIB, including the living carbocationic approach, organometallic catalyst systems and the widely explored carbocationic polymerization involving the chain transfer promoting catalysts based on Lewis acids. The complexes of Lewis acids involving ionic liquids show high potential in carbocationic polymerization of isobutylene to produce HRPIB with desired characteristics. Further advancements are focussed on the economics and environmentally safe approaches, assuring valued commercial process and HRPIB product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Fig. 1
Fig. 2
Scheme 12
Scheme 13

Similar content being viewed by others

References

  1. Norbert W, Olga VL (2009) Polyisobutene based pressure sensitive adhesives, Chap. 4, Technology of pressure sensitive additives and products. Edited by Istvan B, Mikhail MF, CRC press, Taylor & Francis group

  2. Kunal K, Paluch M, Roland CM, Puskas JE, Chen Y, Sokolov AP (2008) Polyisobutylene: a most unusual polymer. J Polym Sci Part B: Polym Phys 46(13):1390–1399

    Article  CAS  Google Scholar 

  3. Puskas JE, Kaszas G (2003) Encyclopaedia of Polymer Science and Technology. Wiley-InterScience, New York

    Google Scholar 

  4. https://rubberworld.com/global-highly-reactive-polyisobutylene-hr-pib-market-forecast-at-607-9-million-by-2031. Search date of 3rd February 2023

  5. Rabie F, Hosni G, Hassan H, Sherif M (2019) Comparative analytical study of polyisobutylene succinic anhydride-modified triethanolamine emulsifier. Al-Azhar Bull Sci 30:21–35

    Article  Google Scholar 

  6. Argo C, Gillam SM, Orsini F (2000) Identification of olefin end groups in commercial polybutene oligomers. Polym Bull 44:71–78

    Article  CAS  Google Scholar 

  7. Balzano F, Pucci A, Rausa R, Uccello-Barretta G (2012) Alder-ene addition of maleic anhydride to polyisobutene: nuclear magnetic resonance evidence for an unconventional mechanism. Polym Int 61:1256–1262

    Article  CAS  Google Scholar 

  8. Jessica BA, Mateus KV, Lys HRM, Maxmiliano T, Juliana F, Daniela C, Pedro LI, Marcio VR, Marcio HSA, Jose CP (2021) Bibliometric survey on polyisobutylene manufacture. Processes 9:1315–1353

    Article  Google Scholar 

  9. Mach H, Rath P (1999) Highly reactive polyisobutene as a component of a new generation of lubricant and fuel additives. Lubr Sci 11:175–185

    Article  CAS  Google Scholar 

  10. Evans AG, Meadows GW (1949) Polymerization of isobutene catalyzed by boron trifluoride. J Polym Sci 4:359–376

    Article  CAS  Google Scholar 

  11. Rajasekhar T, Singh G, Kapur GS, Ramakumar SSV (2020) Recent advances in catalytic chain transfer polymerization of isobutylene: a review. RSC Adv 10:18180–18191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kennedy JP (1975) Cationic polymerization of olefins: a critical inventory. Wiley-Interscience, New York

    Google Scholar 

  13. Thomas RM, Sparks WJ (1944) Mixed olefinic polymerization process and product. Jasco Inc. US2356128

  14. Faust R, Kennedy JP (1986) Living carbocationic polymerization III. Demonstration of the living polymerization of isobutylene. Polym Bull 15:317–323

    Article  CAS  Google Scholar 

  15. Kostjuk SV (2015) Recent progress in the Lewis acids co-initiated cationic polymerization of isobutylene and 1,3-dienes. RSC Adv 5:13125–13144

    Article  CAS  Google Scholar 

  16. Faust R (2012) In: Matyjaszewski K K (ed) Cationic polymerization of nonpolar vinyl monomers. Polymer Science: a comprehensive reference. M. Moller, Elsevier

  17. Yang L, Mirza C, Fritz EK (2011) Inorganic/organometallic catalysts and initiators involving weakly coordinating anions for isobutene polymerisation. Coord Chem Rev 255:1541–1557

    Article  Google Scholar 

  18. Kostjuk SV, Yeong HY, Voit B (2013) Cationic polymerization of isobutylene at room temperature. J Polym Sci Part Polym Chem 51:471–486

    Article  CAS  Google Scholar 

  19. Puskas JE, Kaszas G (2000) Living carbocationic polymerization of resonance-stabilized monomers. Prog Polym Sci 25:403–452

    Article  CAS  Google Scholar 

  20. Irina VV, Sergei VK (2021) Homogeneous and heterogeneous catalysts for the synthesis of highly reactive polyisobutylene: discovery, development and perspectives. J Macromolecular Sci Part Pure Appl Chem 58:725–735

    Article  Google Scholar 

  21. Szwarc M, Levy M, Milkovich R (1956) Polymerization initiated by electron transfer to monomer. A new method of formation of block polymers. J Am Chem Soc 78:2656–2657

    Article  CAS  Google Scholar 

  22. Noshay A, McGrath J (1977) Block copolymers overview and critical survey. Academic, New York

    Google Scholar 

  23. Allport DC, Janes WH (eds) (1973) Block copolymers. Applied Science Publishers, London

    Google Scholar 

  24. Kennedy JP (1999) Living Cationic polymerization of olefins. How did the Discovery come about? J Polym Science: Part A: Polym Chem 37:2285–2293

    Article  CAS  Google Scholar 

  25. Faust R, Kennedy JP (1987) Living carbocationic polymerization. IV. Living polymerization of isobutylene. J Polym Sci Part A Polym Chem 25:1847–1869

    Article  CAS  Google Scholar 

  26. Kennedy JP, Ivan B (1992) Designed polymers by Carbocationic Macromolecular Engineering: theory and practice. Hanser, Munich

    Google Scholar 

  27. Stanislaw P, Julia P, Piotr L (2017) Dormant polymers and their role in living and controlled polymerizations; influence on polymer chemistry particularly on the ring opening polymerization. Polymers 9:646–664

    Article  Google Scholar 

  28. Sadahito Aoshima S (2009) A Renaissance in living Cationic polymerization. Chem Rev 109:5245–5287

    Article  PubMed  Google Scholar 

  29. Faust R, Fehervari A, Kennedy JP (1982) Quasiliving Carbocationic polymerization. II. The Discovery: the α-Methylstyrene system. J Macromolecular Science: Part Chem 18:1209–1228

    Article  Google Scholar 

  30. Kennedy JP, Kelen T, Tüdös F (1982) Quasiliving carbocationic polymerization. I. classification of living polymerizations in carbocationic systems. J Macromolecular Sci Part Chem 18(9):1189–1207

    Article  Google Scholar 

  31. Storey RF, Thomas QA (2003) Quasi-living cationic polymerization of styrene and isobutylene: measurement of run number and calculation of apparent rate constant of ionization by TiCl4. Macromolecules 36(14):5065–5071

    Article  CAS  Google Scholar 

  32. Wondraczek RH, Kennedy JP, Storey RF (1982) New telechelic polymers and sequential copolymers by polyfunctional initiator-transfer agents (Inifers). XIII. Influence of Lewis acid strength and counter anion. Stability on the synthesis of telechelic polyisobutylenes. J Polym Sci Polym Chem Ed 20(1):43–51

    Article  CAS  Google Scholar 

  33. Puskas J, Kaszas G, Kennedy JP, Kelen T, Tudos F (1982) Quasi-Living Carbocationic polymerization. III. Quasi-living polymerization of Isobutylene. J Macromol Sci Chem 18:1229–1244

    Article  Google Scholar 

  34. Puskas JE, Kaszas G, Kennedy JP, Kelen T, Tudos F (1982) Quasiliving Carbocationic polymerization. IX. Forced Ideal copolymerization of styrene derivatives. J Macromol Sci Chem 18:1315–1338

    Article  Google Scholar 

  35. Sawamoto M, Kennedy JP (1982) Quasi-living carbocationic polymerization of alkyl vinyl ethers and block copolymer synthesis. ACS Symp Ser 193:213–227

    Article  CAS  Google Scholar 

  36. Higashimura T (1976) The nature of propagating species in cationic polymerization of vinyl compounds. Int Symp Cationic Polym 4th. J Polym Sci Polym Symp 56:71–78

    Article  CAS  Google Scholar 

  37. Sawamoto M, Masuda T, Higashimura T (1976) Cationic polymerization of styrenes by protonic acids and their derivatives, 2. Two propagating species in the polymerization by Trifluoromethanesulfonic Acid. Makromol Chemie 177(10):2995–3007

    Article  CAS  Google Scholar 

  38. Higashimura T, Yamamoto K (1977) Studies on propagating species in cationic polymerization of styrene derivatives by acetyl perchlorate or iodine. III. Effect of salt on cationic copolymerization of styrene derivatives with vinyl ethers by acetyl perchlorate. J Polym Sci Polym Chem Ed 15(2):301–309

    Article  CAS  Google Scholar 

  39. Kennedy JP, Chang VSC, Smith RA, Ivan B (1979) New telechelic polymers and sequential copolymers by polyfunctional initiator-transfer agents (inifers) V. synthesis of α-tert-butyl-ω-isopropenylpolyisobutylene and α, ω-di(isopropenyl)polyisobutylene. Polym Bull 1:575–580

    Article  CAS  Google Scholar 

  40. Mishra MK, Sar-Mishra B, Kennedy JP (1985) New telechelic polymers and sequential copolymers by polyfunctional initiator-transfer agents (inifers). Polym Bull 13:435–439

    Article  CAS  Google Scholar 

  41. Feldthusen J, Ivan B, Muller AHE (1998) The effect of reaction conditions on the chain end structure and functionality during dehydrochlorination of tert-chlorine telechelic polyisobutylene by potassium tert-butoxide. Macromol Rapid Commun 19:661–663

    CAS  Google Scholar 

  42. Wilczek L, Kennedy JP (1987) Electrophilic substitution of organosilicon compounds I. Model studies of allylation of tert-chlorine ended polyisobutylenes with allyltrimethylsilane. Polym Bull 17:37–43

    Article  CAS  Google Scholar 

  43. Wilczek L, Kennedy JP (1987) Electrophilic substitution of organosilicon compounds. II. Synthesis of allyl-terminated polyisobutylenes by quantitative allylation of tert-chloro-polyisobutylenes with allyltrimethylsilane. J Polym Sci Part A Polym Chem 25:3255–3265

    Article  CAS  Google Scholar 

  44. Nielson LV, Nielson RR, Gao B, Kops J, Iván B (1997) Synthesis of isobutenyl-telechelic polyisobutylene by functionalization with isobutenyltrimethylsilane. Polymer 38:2529

    Article  Google Scholar 

  45. Ivan B, Kennedy JP (1990) Living carbocationic polymerization. XXX. One-pot synthesis of allyl-terminated linear and tri-arm star polyisobutylenes, and epoxy- and hydroxy-telechelics therefrom. J Polym Sci Part A Polym Chem 28:89–104

    Article  CAS  Google Scholar 

  46. Bohdan M, Shiman DI, Nikishau PA, Vasilenkoa IV, Kostjuk SV (2022) Quasiliving carbocationic polymerization of isobutylene using FeCl3 as an efficient and water-tolerant Lewis acid: synthesis of well-defined telechelic polyisobutylenes. Polym Chem 13:6010–6021

    Article  CAS  Google Scholar 

  47. Simison KL, Stokes CD, Harrison JJ, Storey RF (2006) End-quenching of Quasiliving Carbocationic Isobutylene polymerization with hindered bases: quantitative formation of exo-olefin-terminated polyisobutylene. Macromolecules 39:2481–2487

    Article  CAS  Google Scholar 

  48. Morgan DL, Stokes CD, Meierhoefer MA, Storey RF (2009) Sulfonium Ion Adducts from Quasiliving Polyisobutylene and Mono or Disulfides, used sulfides and disulfides as quenching/capping agents for TiCl4-catalyzed isobutylene polymerizations. Macromolecules 42:2344–2352

    Article  CAS  Google Scholar 

  49. Ummadisetty S, Storey RF (2013) Quantitative synthesis of exo-olefin-terminated polyisobutylene: Ether quenching and evaluation of various quenching methods. Macromolecules 46:2049–2059

    Article  CAS  Google Scholar 

  50. Xiao-Jian Y, An-Ru G, Hui-Chao X, Yi-Xian W (2015) Direct synthesis of highly reactive polyisobutylenes via cationic polymerization of isobutylene co-initiated with TiCl4 in nonpolar hydrocarbon media. J Appl Polym Sci 132:42232

    Google Scholar 

  51. He Y, Lu Y (2022) Living cationic polymerization of isobutylene in seconds based on microflow system. Eur Polymer J 174:111335

    Article  CAS  Google Scholar 

  52. Rui H, Tsuyoshi N, Arihiro K, Sadahito A (2020) Metal- free living cationic polymerization using diaryliodonium salts as organic Lewis acid catalysts. Macromolecules 53:4185–4192

    Article  Google Scholar 

  53. Rooney JM (1989) Comprehensive polymer science. Allen G, Bevington JC, Eastmond GC, Ledwith A, Russo S, Sigwalt P (ed) Pergamon press: Oxford, 3:697–704

  54. Higashimura T, Sawamoto (1989). In: Allen G, Bevington JC, Eastmond GC, Ledwith A, Russo S, Sigwalt P (eds) Comprehensive Polymer Science. Pergamon Press, New York

    Google Scholar 

  55. Baird MC (2000) Carbocationic alkene polymerizations initiated by organotransition metal complexes: an alternative, unusual role for soluble ziegler – Natta catalysts. Chem Rev 100:1471–1478

    Article  CAS  PubMed  Google Scholar 

  56. Bochmann M (2010) Highly electrophilic organometallics for carbocationic polymerizations: from anion engineering to new polymer materials. Acc Chem Res 43:1267–1278

    Article  CAS  PubMed  Google Scholar 

  57. Sabmannshausen J (2009) Cationic and dicationic zirconocene compounds as initiators of carbocationic isobutene polymerisation. Dalton Trans 9026–9032

  58. Barsan F, Karam AR, Parent MA, Baird MC (1998) Polymerization of Isobutylene and the copolymerization of Isobutylene and Isoprene initiated by the Metallocene Derivative Cp*TiMe2(µ-Me)B(C6F5)3. Macromolecules 31:8439–8447

    Article  CAS  Google Scholar 

  59. Tse CKW, Kumar KR, Drewitt MJ, Baird MC (2004) Isobutene polymerization and copolymerization with Isoprene initiated by [Cp*TiMe2]+ in the Presence of a novel type of weakly coordinating Counteranion. Macromol Chem Phys 205:1439–1444

    Article  CAS  Google Scholar 

  60. Carr AG, Dawson DM, Thornton-Pett M, Bochmann M (1999) Cationic Zirconocene Hydrides: a New type of highly effective initiators for Carbocationic Polymerizations. Organometallics 18:2933–2935

    Article  CAS  Google Scholar 

  61. Shaffer TD, Ashbaugh JR (1997) Noncoordinating anions in carbocationic polymerization. J Polym Sci Part A Polym Chem 35:329–344

    Article  CAS  Google Scholar 

  62. Rach S, Kuhn FE (2009) Nitrile Ligated Transition Metal Complexes with weakly coordinating Counteranions and their Catalytic Applications. Chem Rev 109:2061–2080

    Article  CAS  PubMed  Google Scholar 

  63. Cotton FA, Daniels LM, Haefner SC, Kuhn FE (1999) Synthesis, reactivity, and structures of (µ-acetamidato) hexakis (acetonitrilo) dimolybdenum (II) tris (tetrafluoroborate) and derivatives. Inorg Chim Acta 287:159–166

    Article  CAS  Google Scholar 

  64. Vierle M, Zhang Y, Herdtweck E, Bohnenpoll M, Nuyken O, Kuhn FE (2003) Highly reactive polyisobutenes prepared with manganese (II) Complexes as Initiators. Angew Chem Int Ed 42:1307–1310

    Article  CAS  Google Scholar 

  65. Bohnenpoll M, Ismeier J, Nuyken O, Vierle M, Schon D, Kuhn FE (2003) Process to prepare high reactive polyisobutene. Bayer AG, EP 1344785

  66. Vierle M, Zhang Y, Santos AM, Kohler K, Haeßner C, Herdtweck E, Bohnenpoll M, Nuyken O, Kuhn FE (2004) Solvent-ligated manganese (II) complexes for the homopolymerization of Isobutene and the copolymerization of Isobutene and Isoprene. Chem Eur J 10:6323–6332

    Article  CAS  PubMed  Google Scholar 

  67. Nuyken O, Vierle M, Kuhn FE, Zhang Y (2006) Solvent-ligated transition metal complexes as initiators for the polymerization of isobutene. Macromol Symp 236:69–77

    Article  CAS  Google Scholar 

  68. Radhakrishnan N, Hijazi AK, Komber H, Voit B, Zschoche S, Kühn FE, Nuyken O, Walter OM, Hanefeld P (2007) Synthesis of highly reactive polyisobutylenes using solvent-ligated manganese (II) complexes as catalysts. J Polym Sci Part A Polym Chem 45:5636–5648

    Article  CAS  Google Scholar 

  69. Silvana FR, Fritz EK (2009) On the way to improve the environmental benignity of chemical processes: novel catalysts for a polymerization process. Sustainability 1:35–42

    Article  Google Scholar 

  70. Yeong HY, Li Y, Kühn FE, Voit B (2013) The role of solvent-ligated metal(II) complexes incorporating (fluoroalkoxy)aluminates as weakly coordinating anions in isobutylene polymerization. J Polym Sci Part A: Polym Chem 51(1):158–165

    Article  CAS  Google Scholar 

  71. Shin CG, Hyun J (2021) Organic borate-based catalyst, method for producing isobutene oligomer using same, and isobutene oligomer prepared therefrom. WO2021034041A1. LG Chem

  72. Chai J, Lewis SP, Collins S, Sciarone TJJ, Henderson LD, Chase PA, Irvine GJ, Piers WE, Eisegood MRJ, Clegg W (2007) Formation of chelated counteranions using Lewis acidic diboranes: relevance to isobutene polymerization. Organometallics 26:5667–5679

    Article  CAS  Google Scholar 

  73. Lewis SP, Chai J, Collins S, Sciarone TJJ, Henderson LD, Fan C, Parvez M, Piers WE (2009) Isobutene polymerization using chelating diboranes: polymerization in aqueous suspension and hydrocarbon solution. Organometallics 28:249–263

    Article  CAS  Google Scholar 

  74. Guerrero A, Kulbaba K, Bochmann M (2007) “Highly Reactive” poly(isobutene)s via room temperature polymerization with a new zinc-based initiator system. Macromolecules 2007, 40, 4124–4126

  75. Guerrero A, Kulbaba K, Bochmann M (2008) Alkyl zinc chlorides as new initiators for the polymerization and copolymerization of isobutene. Macromol Chem Phys 209:1714–1720

    Article  CAS  Google Scholar 

  76. Lichtenthaler MR, Higelin A, Kraft A, Hughes S, Steffani A, Plattner DA, Slattery JM, Krossing I (2013) Univalent gallium salts of weakly coordinating anions: effective initiators/catalysts for the synthesis of highly reactive polyisobutylene. Organometallics 32:6725–6735

    Article  CAS  Google Scholar 

  77. Lichtenthaler MR, Maurer S, Mangan RJ, Stahl F, Mönkemeyer F, Hamann J, Krossing I (2015) Univalent gallium complexes of simple and ansa-arene ligands: Effects on the polymerization of isobutylene. Chemistry 21:157–165

    Article  CAS  PubMed  Google Scholar 

  78. Miyamoto M, Sawamoto M, Higashimura T (1984) Living polymerization of isobutyl vinyl ether with hydrogen iodide/iodine initiating system. Macromolecules 17:265–268

    Article  CAS  Google Scholar 

  79. Mayr H (1999) In: Series E, Puskas JE (eds) Ionic polymerizations and related processes. NATO Science. Kluwer Academic Publishers Dordrecht/Boston/London

  80. Harrison JJ, Young DC, Mayne CL (1997) 2D-inadequate structural assignment of polybutene oligomers. J Org Chem 62:693–699

    Article  CAS  PubMed  Google Scholar 

  81. Harrison JJ, Mijares CM, Cheng MT, Hudson J (2002) Negative ion electrospray ionization mass spectrum of polyisobutenylsuccinic anhydride: implications for isobutylene polymerization mechanism. Macromolecules 35:2494–2500

    Article  CAS  Google Scholar 

  82. Dimitrov P, Emert J, Hua J, Keki S, Faust R (2011) Mechanism of isomerization in the cationic polymerization of isobutylene. Macromolecules 44:1831–1840

    Article  CAS  Google Scholar 

  83. Gocher CP, Pandita N, Choudhury RP, Bhakthavatsalam V (2022) Understanding microstructural heterogeneity in low and high molecular weight fractions of polydisperse polyisobutylene by SEC and NMR for its reactivity. J Polym Res 29:449

    Article  CAS  Google Scholar 

  84. Priola A, Cesca S, Ferraris G (1978) Process for the production of polymers and copolymers of isobutylene. US 4107417 SnamProgetti SpA

  85. Rath HP (1994) Preparation of highly reactive polyisobutenes. US 5286823A, BASF AG

  86. Tatsuya C, Kuroki Teruhisa K, Okazaki Motoya O, Sato Koichi S (2016) Polyisobutylene production method, production for improving the yield of highly reactive polyisobutylene and polyisobutylene production device. WO2016047445 A1. Nippon oil & energy Corp

  87. Vasilenko IV, Frolov AN, Kostjuk SV (2010) Cationic polymerization of isobutylene using AlCl3OBu2 as a coinitiator: synthesis of highly reactive polyisobutylene. Macromolecules 43:5503–5507

    Article  CAS  Google Scholar 

  88. Dimitrov P, Emert J, Faust R (2012) Polymerization of isobutylene by AlCl3/Ether complexes in nonpolar solvent. Macromolecules 45:3318–3325

    Article  CAS  Google Scholar 

  89. Liu Q, Wu XY, Zhang Y, Yan PF, Xu RW (2010) A cost-effective process for highly reactive polyisobutylenes via cationic polymerization coinitiated by AlCl3. Polymer 51:5960–5969

    Article  CAS  Google Scholar 

  90. Shiman DI, Vasilenko IV, Kostjuk SV (2013) Cationic polymerization of isobutylene by AlCl3/ether complexes in non-polar solvents: Effect of ether structure on the selectivity of β-H elimination. Polymer 54:2235–2242

    Article  CAS  Google Scholar 

  91. Zhu S, Wang K, Lu Y (2018) Effects of ether on the cationic polymerization of Isobutylene catalyzed by AlCl3. ACS Omega 3:2033–2039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kumar R, Dimitrov P, Bartelson KJ, Emert J, Faust R (2012) Polymerization of isobutylene by GaCl3 or FeCl3/Ether complexes in nonpolar solvents. Macromolecules 45:8598–8603

    Article  CAS  Google Scholar 

  93. Liu Q, Wu Y, Yan P, Zhang Y, Xu R (2011) Polyisobutylene with high exo-olefin content via ß-H elimination in the cationic polymerization of isobutylene with H2O/FeCl3/dialkyl ether initiating system. Macromolecules 44:1866–1875

    Article  CAS  Google Scholar 

  94. Kumar R, Zheng B, Huang KW, Emert J, Faust R (2014) Synthesis of highly reactive polyisobutylene catalyzed by EtAlCl2 / bis(2-chloroethyl) ether soluble complex in hexanes. Macromolecules 47:1959–1965

    Article  CAS  Google Scholar 

  95. Zhu S, Lu Y, Faust R (2017) Micromixing enhanced synthesis of HRPIBs catalyzed by EADC/bis(2-chloroethyl) ether complex. RSC Adv 7:27629–27636

    Article  CAS  Google Scholar 

  96. Rajasekhar T, Emert J, Wolf LM, Faust R (2018) Controlled catalytic chain transfer polymerization of isobutylene in the presence of tert-butanol as exo-enhancer. Macromolecules 51:3041–3049

    Article  CAS  Google Scholar 

  97. Faust R, Emert J (2016) Polymerization initiating system and method to produce highly reactive olefin functional polymers. US 2016/0333123 A1. Infineum International Ltd & University of Massachusetts

  98. Dimitrov P, Severt RJ (2020) Method for forming highly reactive olefin polymers. US 10,829,573 B1 Infineum International Limited

  99. Faust R, Emert J (2019) Method for forming highly reactive olefin functional polymers. CA 3031293 C. Infinieum International Limited and University of Massachusetts

  100. Rosa CR, Klaus M, Thomas W, Sergei VK, Irina V, Dmitryi S (2019) Process for preparing high-reactivity isobutene homo- or copolymers. WO 2019/034477 A1 BASF SE

  101. Vasilenko IV, Berezianko IA, Shiman DI, Kostjuk SV (2016) New catalysts for the synthesis of highly reactive polyisobutylene: chloroaluminate imidazole-based ionic liquids in the presence of diisopropyl ether. Polym Chem 7:5615–5619

    Article  CAS  Google Scholar 

  102. Ivan A, Berezianko IA, Vasilenko IV, Kostjuk SV (2018) Acidic imidazole-based ionic liquids in the presence of diisopropyl ether as catalysts for the synthesis of highly reactive polyisobutylene: Effect of ionic liquid nature, catalyst aging, and sonication. Polymer 145:382–390

    Article  Google Scholar 

  103. Li X, Wu Y, Zhang J, Li S, Zhang M, Yang D, Wang H, Shang Y, Guo W, Yan P (2019) Synthesis of highly reactive polyisobutylenes via cationic polymerization in ionic liquids: characteristics and mechanism. Polym Chem 10:201–208

    Article  CAS  Google Scholar 

  104. Dmitriy IS, Ivan AB, Irina VV, Sergei VK (2019) Cationic polymerization of isobutylene and C4 mixed feed using complexes of Lewis acids with ethers: a comparative study. Chin J Polym Sci 37:891–897

    Article  Google Scholar 

  105. Berezianko IA, Vasilenkoa IV, Kostjuk SV (2022) Silica gel supported ionic liquids as effective and reusable catalysts for the synthesis of highly reactive polyisobutylene in non-polar media. Polym Chem 13:6625–6636

    Article  CAS  Google Scholar 

  106. Gupta VK, Mishra A, Singh R, Sapre A (2020) Process for preparing high reactive polyisobutylene. WO2020084557A1. Reliance Industries Limited

  107. Yousefi S, Bahri-Laleh N, Nekoomanesh M, Emami M, Sadjadi S, Mirmohammadi SA, Tomasini M, Bardají E, Poater A (2022) An efficient initiator system containing AlCl3 and supported ionic-liquid for the synthesis of conventional grade polyisobutylene in mild conditions. J Mol Liq 367:120381

    Article  CAS  Google Scholar 

  108. Kahkeshi ZI, Bahri-Laleh N, Sadjadi S, Haghighi MN (2023) An environmentally benign approach for the synthesis of low molar mass polybutenes from mixed C4 monomers using AlCl3/ionic-liquid initiating systems. Mol Catal 547:113332

    Article  CAS  Google Scholar 

  109. Harrane A, Meghabar R, Belbachir M (2002) A Protons exchanged Montmorillonite Clay as an efficient Catalyst for the reaction of Isobutylene polymerization. Int J Mol Sci 3:790–800

    Article  CAS  Google Scholar 

  110. Ivan AB, Pavel AN, Irina VV, Sergei VK (2021) Liquid coordination complexes as a new class of catalysts for the synthesis of highly reactive polyisobutylene. Polymer 226:123825

    Article  Google Scholar 

  111. Boerzel P, Bronstert K, Hovermann F (1979) Polyisobutenes, US patent 4152499. BASF

  112. Kurata T, Sano T (2016) Photocurable elastomer composition, seal material, gasket for hard disc drive, hard disc drive and apparatus. US 9388267 B2, Bridgestone Corporation

  113. Wettling T, Hirsch S, Brym M, Weis M (2014) Highly reactive polyisobutylene having a high percentage of vinylidene double bonds in the side chains. EP3022239B1, BASF SE

  114. Johnson JR, Burrington JD (1998) Heteropolyacid catalyzed polymerization of olefins. US 5710225, Lubrizol

    Google Scholar 

  115. Johnson JR, Burrington JD (2002) Ammonium heteropolyacid catalized polymerization of olefins. US 6346585 B1, Lubrizol

  116. Johnson JR, Burrington JD, Kolp CJ, Pudelski JK, Dietz JG, McCullough GR, Baumanis CK, de Cerda CL (2002) Dispersants prepared from high polydispersity olefin polymers. US 6407170 B1, Lubrizol

  117. Burrington JD, Johnson JR, Pudelski JK (2003) Cationic polymerization using heteropolyacid salt catalysts. Top Catal 23:175–181

    Article  CAS  Google Scholar 

  118. Seddon EJ, Friend CL, Roski JP (2010) Detergents and dispersants. Chemistry and technology of lubricants. Springer, New York

    Google Scholar 

  119. La Rocca A, Boatesta F, Fay MW, Campanella F (2015) Characterisation of soot in oil from a gasoline direct injection engine using transmission Electron Microscopy. Tribol Int 86:77–84

    Article  Google Scholar 

  120. Growney D, Mykhaylyk O, Middlemiss L, Fielding L, Derry M, Aragrag N, Lamb G, Armes S (2015) Is Carbon Black a suitable Model Colloidal substrate for Diesel. Soot? Langmuir 31(38):10358–10369

    Article  CAS  PubMed  Google Scholar 

  121. Rudnick LR (ed) (2009) Lubricant additives: Chemistry and Applications, 2nd edn. CRC Press, Boca Raton, Finland

    Google Scholar 

  122. Le Suer WM, Norman GR (1966) Lubricating composition containing an acylated nitrogen compound. US 3272746, Lubrizol Corp

    Google Scholar 

  123. Stuart FA, Anderson RG, Drummond AY (1968) Lubricating oil compositions containing alkenyl succinimdes of tetraethylene pentamine. US 3361673, Chevron USA Inc

  124. Bartlomiej K, Krystyna S, Patrycja K, Kuba S, Katarzyna J, Tomasz J (2022) Emulsion Explosives: a Tutorial Review and Highlight of recent progress. Materials 15:4952–4966

    Article  Google Scholar 

  125. Al-Sabagh AM, Mostafa AH, Marwa RM, Amira EE, Ahmed AA (2017) Preparation and investigation of emulsion explosive matrix based on gas oil for mining process. J Mol Liq 238:198–207

    Article  CAS  Google Scholar 

  126. Dirk L, Tobias R (2006) Method for producing alkenyl succinic anhydrides. WO2006066720A1, Clariant Produkte (Deutschland) Gmbh

  127. Vivek BG, Guy DJ, Shujun W, Peiwang Z, Babu N, Gaddam Sanat M, Jingjing M (2010) Pressure sensitive adhesive comprising functionalized polyisobutylene hydrogen bonded to acylic polymer. US20120285618 A1, 3 M Innovative Properties Co

  128. Cai L, Liu B, Liu X, Cui D (2022) Synthesis of high molecular weight polyisobutylene with Al(C6F5)3-based initiating systems under mild conditions. Polymer 241:124531

    Article  Google Scholar 

  129. Stewart PL, Krishnan D (2023) Highly exo-olefinic polyisobutene synthesized using a recyclable acid. J Polym Sci 61:685–699

    Article  Google Scholar 

  130. Shrirang VR, Robert ER, Michael NH (2005) Styrenic block copolymers for biomaterial and drug delivery applications. Acta Biomaterial 1:137–144

    Article  Google Scholar 

  131. Leonard P, Gregory JW, Jamnes JB, Richard TS, Jean-Marie P, Joseph PK (2008) Medical applications of poly(styrene-block-isobutylene-block-styrene) (“SIBS”). Biomaterials 29:448–460

    Article  Google Scholar 

  132. Rezvovaa MA, Ovcharenkoa EA, Nikishev PA, Kostyuk SV (2019) Prospects for using styrene–isobutylene–styrene (SIBS) triblock copolymer as a cusp material for leaflet heart valve prostheses: evaluation of physicochemical and mechanical properties. Russ J Appl Chem 92:9–19

    Article  Google Scholar 

  133. Shucheng X, Ke Y, Qiang L, Hui L, Hao Z, Tao Z, Shouke Y, Junwei D (2023) A cost-effective strategy for the synthesis of polystyrene-polyisobutylene-polystyrene triblock copolymer (SIBS) based on dicumyl chloride/TiCl4/Ti(OiPr)4 initiating system. J Polym Sci 61:700–708

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virendra Kumar Gupta.

Ethics declarations

Conflicts of interest

The authors have no any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthikeyan, S., Gupta, V.K. Highly reactive polyisobutylene through cationic polymerization of isobutylene. J Polym Res 30, 337 (2023). https://doi.org/10.1007/s10965-023-03706-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03706-6

Keywords

Navigation