Skip to main content
Log in

Interfacial engineering of PZT/PVDF composites via insulating MgO as an interlayer towards enhanced dielectric performances

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polymer dielectrics with synergistic large dielectric constant (ε′) and high breakdown field strength (Eb) have important applications in electronics device and electrical industry. In this work, to enhance the integrated dielectric characteristics of lead zirconate titanate (PZT)/poly(vinylidene fluoride) (PVDF), an insulating magnesia (MgO) shell was constructed on the surface of PZT via a facile chemical precipitation, and the prepared core@shell structured PZT@MgO particles were composited with PVDF to anticipate both high ε′ and Eb but low loss. We explored how the filler loading and MgO shell thickness, frequency affect the dielectric performances of PZT/PVDF composites. The results confirm that the PZT@MgO/PVDF composites show simultaneously improved ε′ and Eb along with low loss over the pristine PZT/PVDF because the MgO interlayer induces multiple-scale polarizations in PZT@MgO/PVDF and clearly boosts the Eb due to markedly prohibited charge injection and migration and electrical branch growth. The optimized ε′ and Eb in composites can be realized by controlling the MgO shell thickness. The theoretic fitting of experimental results by the Havriliak-Negami equation further uncovers the MgO shell’ impact on the polarization mechanism and expounds the inhibiting effect on carrier migration across the composites. The resulting PZT@MgO/PVDF composite dielectrics having both high ε′ and Eb but extremely low loss, display appealing uses in the electrical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhang N, Liu XR, Zhao SS, Yang ZW (2022) Crystal structures of three transition metal complexes with salicylaldehyde-4-hydroxy phenylacetyl acylhydrazone and their interactions with CT-DNA and BSA. Polyhedron 211

    Google Scholar 

  2. Zhang X, Shen Y, Xu B, Zhang Q, Gu L, Jiang J, Ma J, Lin Y, Nan CW (2016) Giant Energy Density and Improved Discharge Efficiency of Solution-Processed Polymer Nanocomposites for Dielectric Energy Storage. Adv Mater 28(10):2055–2061

    CAS  PubMed  Google Scholar 

  3. Chang LL, Yang J, Liu XR, Yang ZW (2022) Zhao SS (2022) Synthesis, crystal structures and CT-DNA/BSA binding properties of Co(III) and Cu(II) complexes with bipyridine Schiff base ligand. Inorg Chim Acta 532

    CAS  Google Scholar 

  4. Zhao D, Zhang Z, Ren J, Xu Y, Xu X, Zhou J, Gao F, Tang H, Liu S, Wang Z, Wang D, Wu Y, Liu X, Zhang Y (2023) Fe2VO4 nanoparticles on rGO as anode material for high-rate and durable lithium and sodium ion batteries. Chem Eng J 451

    CAS  Google Scholar 

  5. Huang DS, Liu XR, Zhao SS, Yang ZW (2022) Crystal structures of three transition metal complexes with salicylaldehyde-4-hydroxy phenylacetyl acylhydrazone and their interactions with CT-DNA and BSA. Polyhedron 211

    CAS  Google Scholar 

  6. Khanchaitit P, Han K, Gadinski MR, Li Q, Wang Q (2013) Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage. Nat Commun 4(1):2845

    PubMed  Google Scholar 

  7. Yang Z, Xu TT, Zhang X, Li H, Jia XD, Zhao SS, Yang ZW, Liu XR (2022) Nitrogen–doped carbon quantum dots as fluorescent nanosensor for selective determination and cellular imaging of ClO- Spectrochim Acta Part A Mol Biomol Spectrosc 271

    CAS  Google Scholar 

  8. Chen Q, Shen Y, Zhang SH, Zhang QM (2015) Polymer-based dielectrics with high energy storage density. Annu Rev Mater Res 45:433–458

    CAS  Google Scholar 

  9. Luo H, Ma C, Zhou XF, Chen S, Zhang D (2017) Interfacial design in dielectric nanocomposite using liquid crystalline polymer. Macromolecules 50(13):5132–5137

    CAS  Google Scholar 

  10. Xu TT, Li H, Yang HN, Yang Z, Jia XD, Zhao SS, Yang ZW, Liu XR (2022) Nitrogen-Doped and Surface Functionalized CDs: Fluorescent Probe for Cellular Imaging and Environmental Sensing of ClO-. J Fluoresc 32:1591–1600

    CAS  PubMed  Google Scholar 

  11. Zhao LH, Liao CJ, Liu Y, Huang XL, Ning WJ, Wang Z, Jia LC, Ren JW (2022) A combination of aramid nanofiber and silver nanoparticle decorated boron nitride for the preparation of a composite film with superior thermally conductive performance. Compos Interfaces 29(4):447–463

    CAS  Google Scholar 

  12. Yang Z, Li H, Xu TT, Liu XR, Zhao SS, Yang ZW (2020) Azaaromatic Functionalized Rhodamine Based Fluorescent Probes for Selective Dual Channel Detection of ClO1 and Cu2+ in Water Samples and Living Cells. Chem Lett 49(11):1278–1281

    CAS  Google Scholar 

  13. Zheng MS, Zhang C, Yang Y, Xing ZL, Chen X, Zhong SL, Dang ZM (2020) Improved dielectric properties of PVDF nanocomposites with core-shell structured BaTiO3@polyurethane nanoparticles. IET Nanodielectrics 3(3):94–98

    Google Scholar 

  14. Zhong SL, Dang ZM, Zhou WY, Cai HW (2018) Past and future on nanodielectrics. IET Nanodielectrics 1(1):41–47

    Google Scholar 

  15. Ma JC, Azhar U, Zong CY, Zhang YB, Xu AH, Zhai CC, Zhang LQ, Zhang SX (2019) Core-shell structured PVDF@BT nanoparticles for dielectric materials: A novel composite to prove the dependence of dielectric properties on ferroelectric shell. Mater Des 164

    CAS  Google Scholar 

  16. Zhou WY, Kou YJ, Yuan MX, Li B, Cai HW, Li Z, Chen FX, Liu XR, Heng GH, Chen QG, Dang ZM (2019) Polymer composites filled with core@double-shell structured fillers: effects of multiple shells on dielectric and thermal properties. Compos Sci Technol 181

    CAS  Google Scholar 

  17. Zhou WY, Li T, Yuan MX, Li B, Zhong SL, Li Z, Liu XR, Zhou JJ, Wang Y, Cai HW, Dang ZM (2021) Decoupling of inter-particle polarization and intra-particle polarization in core-shell structured nanocomposites towards improved dielectric performance. Energy Stor Mater 42:1–11

    CAS  Google Scholar 

  18. Zhou WY, Cao GZ, Yuan MX, Zhong SL, Wang YD, Liu XR, Cao D, Peng WW, Liu J, Wang GH, Dang ZM, Li B (2022) Core-Shell Engineering of Conductive Fillers toward Enhanced Dielectric Properties: A Universal Polariz ation Mechanism in Polymer Conductor Composites. Adv Mater 2207829

  19. Qu MN, Liu QH, Shi F, Lv YQ, Liu H, Mu LH, Liu XF, He JM (2023) Flexible conductive Ag-CNTs sponge with corrosion resistance for wet condition sensing and human motion detection. Colloids Surf, A 656

    CAS  Google Scholar 

  20. Pradhan SK, Kumar A, Kour P, Pandey R, Kumar P, Kar M, Sinha AN (2020) Piezoelectric and mechanical properties of PVDF-PZT composite. Ferroelectrics 558(1):59–66

    CAS  Google Scholar 

  21. Wang P, Zhang XM, Duan W, Teng W, Liu YB, Xie Q (2021) Superhydrophobic flexible supercapacitors formed by integrating hydrogel with functional carbon nanomaterials. Chin J Chem 39(5):1153–1158

    CAS  Google Scholar 

  22. Xie LY, Huang XY, Huang YH, Yang K, Jiang PK (2013) Core-shell structured hyperbranched aromatic polyamide/BaTiO3 hybrid filler for poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) nanocomposites with the dielectric constant comparable to that of percolative composites. ACS Appl Mater Interfaces 5(5):1747–1756

    CAS  PubMed  Google Scholar 

  23. Fan YY, Huang XY, Wang GY, Jiang PK (2015) Core-shell structured biopolymer@BaTiO3 nanoparticles for biopolymer nanocomposites with significantly enhanced dielectric properties and energy storage capability. J Phys Chem 119(49):27330–27339

    CAS  Google Scholar 

  24. Zha JW, Yao SC, Qiu Y, Zheng MS, Dang ZM (2019) Enhanced dielectric properties and energy storage of the sandwich-structured poly(vinylidene fluoride-co-hexafluoropropylene) composite films with functional BaTiO3@Al2O3 nanofibres. IET Nanodielectrics 2(3):103–108

    Google Scholar 

  25. Qu MN, Lv YQ, Ge JW, Zhang B, Wu YX, Shen L, Liu QH, Yan M, He JM (2023) Hydrophobic and multifunctional strain, pressure and temperature sensor based on TPU/SiO2-ILs ionogel for human motion monitoring, liquid drop monitoring, underwater applications. Colloids Surf, A 664

    CAS  Google Scholar 

  26. Wang P, Zhou D, Guo H, Liu W, Su J, Fu MS, Singh C, Trukhanov S, Trukhanov A (2020) Ultrahigh enhancement rate of energy density of flexible polymer nanocomposites by Core-Shell BaTiO3@MgO Structures as Fillers. J Mater Chem A 8(22):11124–11132

    CAS  Google Scholar 

  27. Chen J, Huang FX, Zhang CY, Meng FC, Cao LL, Lin HX (2022) Enhanced energy storage density in poly (vinylidene fluoride-hexafluoropropylene) nanocomposites by filling with core-shell structured BaTiO3@MgO nanoparticals. J Energy Storage 53

  28. Qu MN, Yang X, Peng L, Liu LL, Yang C, Zhao Z, Liu XR, Zhang TJ, He JM (2021) High Reliable Electromagnetic Interference Shielding Carbon Cloth with Superamphiphobicity and Environmental Suitability. Carbon 174:110–122

    CAS  Google Scholar 

  29. Newnham RE (1989) Electroceramics. Rep Prog Phys 52(2):123

    CAS  Google Scholar 

  30. Chen X, Liang F, Lu W, Zhao Y, Fan G, Wang X (2018) Improved dielectric properties of Ag@TiO2/PVDF nanocomposites induced by interfacial polarization and modifiers with different carbon chain lengths. Appl Phys Lett 112(16)

    Google Scholar 

  31. Yan Z, Zhang D, Zhou XF, Qi H, Luo H, Zhou KC, Abrahams I, Yan HX (2019) Silver niobate based lead-free ceramics with high energy storage density. J Mater Chem A 7(17):10702–10711

    CAS  Google Scholar 

  32. Zhou XF, Qi H, Yan ZN, Xue GL, Luo H, Zhang D (2019) Superior thermal stability of high energy density and power density in domain-engineered Bi0.5Na0.5TiO3–NaTaO3 relaxor ferroelectrics. ACS Appl Mater Interfaces 11(46):43107–43115

    CAS  PubMed  Google Scholar 

  33. Chen X, Han X, Shen Q (2017) PVDF-based ferroelectric polymers in modern flexible electronics. Adv Electron Mater 3(5):1600460

    Google Scholar 

  34. Qian C, Zhu T, Zheng W, Bei R, Liu S, Yu D, Chi Z, Zhang Y, Xu J (2019) Improving dielectric properties and thermostability of CaCu3Ti4O12/polyimide composites by employing surface hydroxylated CaCu3Ti4O12 particles. ACS Appl Polym Mater 1(6):1263–1271

    CAS  Google Scholar 

  35. Liu XJ, Zheng MS, Chen G, Dang ZM, Zha JW (2022) High-temperature polyimide dielectric materials for energy storage: theory, design, preparation and properties. Energy Environ Sci 15(1):56–81

    CAS  Google Scholar 

  36. Li B, Polizos G, Manias E (2022) Interfacial effects on the dielectric properties of elastomer composites and nanocomposites//Dynamics of Composite Materials. Springer International Publishing, Cham, pp 225–249

    Google Scholar 

  37. Li B, Randall CA, Manias E (2022) Polarization mechanism underlying strongly enhanced dielectric permittivity in polymer composites with conductive fillers. J Phys Chem C 126(17):7596–7604

    CAS  Google Scholar 

  38. Yuan MX, Li B, Zhang S, Rajagopalan R, Lanagan MT (2020) High-Field dielectric properties of oriented poly (vinylidene fluoride-co-hexafluoropropylene): structure–dielectric property relationship and implications for energy storage applications. ACS Appl Polym Mater 2(3):1356–1368

    CAS  Google Scholar 

  39. Wang ZD, Wang XZ, Wang SL, He JY, Zhang T, Wang J, Wu GL (2021) Simultaneously enhanced thermal conductivity and dielectric breakdown strength in sandwich AlN/epoxy composites. Nanomaterials 11(8):1898

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang ZD, Meng GD, Wang LL, Tian LL, Chen SY, Wu GL, Kong B, Cheng YH (2021) Simultaneously enhanced dielectric properties and through-plane thermal conductivity of epoxy composites with alumina and boron nitride nanosheets. Sci Rep 11(1):2495

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang LL, Yang CX, Wang XY, Shen JY, Sun WJ, Wang JK, Yang GQ, Cheng YH, Wang ZD (2022) Advances in polymers and composite dielectrics for thermal transport and high-temperature applications. Compos A Appl Sci Manuf 107320

  42. Jia LC, Jin YF, Ren JW, Zhao LH, Yan DX, Li ZM (2021) Highly thermally conductive liquid metal-based composites with superior thermostability for thermal management. J Mater Chem C 9(8):2904–2911

    CAS  Google Scholar 

  43. Zhao LH, Wei C, M, Ren JW, Li YC, Zheng JJ, Jia LC, Wang Z, Jia SL, (2022) Biomimetic nacreous composite films toward multipurpose application structured by aramid nanofibers and edge-hydroxylated boron nitride nanosheets. Ind Eng Chem Res 61(25):8881–8894

    CAS  Google Scholar 

  44. Zhang D, Liu WW, Guo R, Zhou KC, Luo H (2018) High discharge energy density at low electric field using an aligned titanium dioxide/lead zirconate titanate nanowire array. Adv Sci 5(2):1700512

    Google Scholar 

  45. Lu X, Deng W, Wei JD, Zhu YS, Ren PR, Wan YH, Yan FX, Jin L, Zhang L, Cheng ZY (2021) Filler size effects on the microstructure and properties of polymer-ceramic nanocomposites using a semicrystalline matrix. J Mater Sci 56:19983–19995

    CAS  Google Scholar 

  46. Li B, Sarkarat M, Baker A, Randall CA, Manias E (2021) Interfacial effects on the dielectric properties of elastomer/carbon-black/ceramic composites. MRS Advances 6:247–251

    Google Scholar 

  47. Yuan MX, Zhang G, Li B, Chung TCM, Rajagopalan R, Lanagan MT (2020) Thermally stable low-loss polymer dielectrics enabled by attaching cross-linkable antioxidant to polypropylene. ACS Appl Mater Interfaces 12(12):14154–14164

    CAS  PubMed  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial supports from the National Natural Science Foundation of China (Nos. 52277028, 51903207), Shaanxi Provincial Natural Science Foundation of China (No.2022JM-186, 2021JQ-566), acknowledge the Analytic Instrumentation Center of XUST.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenying Zhou or Ying Li.

Ethics declarations

Conflicts of interests

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, J., Zhou, W., Li, T. et al. Interfacial engineering of PZT/PVDF composites via insulating MgO as an interlayer towards enhanced dielectric performances. J Polym Res 30, 281 (2023). https://doi.org/10.1007/s10965-023-03655-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03655-0

Keywords

Navigation