Skip to main content

Advertisement

Log in

Self healing approaches in polymeric materials-an overview

  • Review paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The development of self-healing polymeric materials was inspired by biological systems wherein damage initiates an autonomic healing response and can automatically repair the internal cracks/ damages without the need for external intervention. This is a new and fascinating field of research that has the potential to improve service life of the materials. These have attracted the attention of many scientists/researchers due to their wide range of applications. The self-healing materials have been broadly classified in to two categories: (1) extrinsic self-healing materials, wherein, the repairing agent is pre-embedded in to the resin matrix and no human involvement is needed to start the healing process, and (2) intrinsic self-healing materials, which do not have an embedded healing agent and an external-stimuli is essential to initiate the healing process. The current review article summarizes a state-of-art in terms of self-healing ability of the polymeric materials. It also provides comprehensive comparison of healing efficiencies, advantages and challenges for the future development, and potential applications of such materials in numerous fields, such as aerospace, coatings and paints, electronics energy, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Scheme 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. van Benthem RATM, Ming W (Marshall), de With G (eds) (2007) (Bert) Self Healing Polymer Coatings. In: Springer Series in Materials Science. pp 139–159

  2. Dry C (1996) Procedures developed for self-repair of polymer matrix composite materials. Compos Struct 35:263–269. https://doi.org/10.1016/0263-8223(96)00033-5

    Article  Google Scholar 

  3. Chen Y, Kushner AM, Williams GA, Guan Z (2012) Multiphase design of autonomic self-healing thermoplastic elastomers. Nat Chem 4:467–472. https://doi.org/10.1038/nchem.1314

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Y, Yu Y, Zhao X et al (2021) A high strength but fast fracture-self-healing thermoplastic elastomer. Macromol Rapid Commun 42:1–6. https://doi.org/10.1002/marc.202100135

    Article  CAS  Google Scholar 

  5. Yu K, Xin A, Feng Z et al (2020) Mechanics of self-healing thermoplastic elastomers. J Mech Phys Solids 137. https://doi.org/10.1016/j.jmps.2019.103831

  6. Jones AR, Watkins CA, White SR, Sottos NR (2015) Self-healing thermoplastic-toughened epoxy. Polym (Guildf) 74:254–261. https://doi.org/10.1016/j.polymer.2015.07.028

    Article  CAS  Google Scholar 

  7. Subramanian V, Varade D (2017) Self-healed materials from thermoplastic polymer composites. 153–180. https://doi.org/10.1007/978-3-319-50424-7_6

  8. Eom Y, Kim SM, Lee M et al (2021) Mechano-responsive hydrogen-bonding array of thermoplastic polyurethane elastomer captures both strength and self-healing. Nat Commun 12:1–11. https://doi.org/10.1038/s41467-021-20931-z

    Article  CAS  Google Scholar 

  9. Zhu DY, Wetzel B, Noll A et al (2013) Thermo-molded self-healing thermoplastics containing multilayer microreactors. J Mater Chem A 1:7191–7198. https://doi.org/10.1039/c3ta11008g

    Article  CAS  Google Scholar 

  10. Wang HP, Yuan YC, Rong MZ, Zhang MQ (2010) Self-healing of thermoplastics via living polymerization. Macromolecules 43:595–598. https://doi.org/10.1021/ma902021v

    Article  CAS  Google Scholar 

  11. Karami Z, Zolghadr M, Zohuriaan-Mehr MJ (2020) Self-healing diels–alder engineered thermosets. Self-Healing polymer-based Systems. INC, pp 209–233

  12. Li G, Meng H (2015) Overview of crack self-healing. In: Recent advances in smart self-healing polymers and composites, pp 1–19

  13. Kahar NNFNMN, Osman AF, Alosime E et al (2021) The versatility of polymeric materials as self-healing agents for various types of applications: a review. Polym (Basel) 13:1–34. https://doi.org/10.3390/polym13081194

    Article  CAS  Google Scholar 

  14. Radl S, Kreimer M, Griesser T et al (2015) New strategies towards reversible and mendable epoxy based materials employing [4πs + 4πs] photocycloaddition and thermal cycloreversion of pendant anthracene groups. Polym (Guildf) 80:76–87. https://doi.org/10.1016/j.polymer.2015.10.043

    Article  CAS  Google Scholar 

  15. Yuan D, Solouki Bonab V, Patel A, Yilmaz T, Gross RA, Manas-Zloczower I (2020) Design strategy for self‐healing epoxy coatings.pdf. Coatings 10

  16. Du Y, Li D, Liu L, Gai G (2018) Recent achievements of self-healing graphene/polymer composites. Polym (Basel) 10. https://doi.org/10.3390/polym10020114

  17. Lin C, Ge H, Wang T et al (2020) A self-healing and recyclable polyurethane/halloysite nanocomposite based on thermoreversible Diels-Alder reaction. Polym (Guildf) 206:122894. https://doi.org/10.1016/j.polymer.2020.122894

    Article  CAS  Google Scholar 

  18. Yuan YC, Ye XJ, Rong MZ et al (2011) Self-healing epoxy composite with heat-resistant healant. ACS Appl Mater Interfaces 3:4487–4495. https://doi.org/10.1021/am201182j

    Article  CAS  PubMed  Google Scholar 

  19. Lee JY, Buxton GA, Balazs AC et al (2014) Using nanoparticles to create self-healing composites Using nanoparticles to create self-healing composites. 5531. https://doi.org/10.1063/1.1784432

  20. Frei R, McWilliam R, Derrick B et al (2013) Self-healing and self-repairing technologies. Int J Adv Manuf Technol 69:1033–1061. https://doi.org/10.1007/s00170-013-5070-2

    Article  Google Scholar 

  21. Gurumurthy BM, Shivaprakash YM, Hiremath A et al (2016) Self healing materials: a new era in material technology: a review. Int J Appl Eng Res 11:1373–1378

    Google Scholar 

  22. Zwaag SV, Der, Grande AM, Post W et al (2014) Review of current strategies to induce self-healing behaviour in fibre reinforced polymer based composites. 30:1633–1641. https://doi.org/10.1179/1743284714Y.0000000624

  23. Urdl K, Kandelbauer A, Kern W et al (2017) Self-healing of densely crosslinked thermoset polymers—a critical review. Prog Org Coatings 104:232–249. https://doi.org/10.1016/j.porgcoat.2016.11.010

    Article  CAS  Google Scholar 

  24. Hu H, Zhang L, Zhang Y et al (2020) Microencapsulation of tris(dimethylaminomethyl)phenol using polystyrene shell for self-healing materials. Sci Rep 10:1–14. https://doi.org/10.1038/s41598-020-69168-8

    Article  CAS  Google Scholar 

  25. Kessler MR, White SR (2001) Self-activated healing of delamination damage in woven composites. Compos Part A Appl Sci Manuf 32:683–699

    Article  Google Scholar 

  26. Brown EN, White SR, Sottos NR (2004) Microcapsule induced toughening in a self-healing polymer composite. J Mater Sci 39:1703–1710. https://doi.org/10.1023/B:JMSC.0000016173.73733.dc

    Article  CAS  Google Scholar 

  27. White SR, Sottos NR, Geubelle PH et al (2002) Erratum: correction: autonomic healing of polymer composites. Nature 415:817–817. https://doi.org/10.1038/415817a

    Article  CAS  Google Scholar 

  28. Lee JK, Hong SJ, Liu X (2004) Characterization of dicyclopentadiene and 5-ethylidene-2-norbornene as self-healing agents for polymer composite and its microcapsules. 12:478–483

  29. Thakur T, Gaur B, Singha AS (2021) Bio-based epoxy/imidoamine encapsulated microcapsules and their application for high performance self-healing coatings. Prog Org Coatings 159:106436. https://doi.org/10.1016/j.porgcoat.2021.106436

    Article  CAS  Google Scholar 

  30. Rodriguez R, Bekas DG, Flórez S et al (2020) Development of self-contained microcapsules for optimised catalyst position in self-healing materials. Polym (Guildf) 187:122084. https://doi.org/10.1016/j.polymer.2019.122084

    Article  CAS  Google Scholar 

  31. Tang H, Fang ZP (2008) Preparation of glass fiber-supported platinum complex catalyst for hydrosilylation reactions. 9:1092–1095. https://doi.org/10.1016/j.catcom.2007.10.017

  32. Cho SH, Andersson HM, White SR et al (2006) Polydiniethylsiloxane-based self-healing materials. Adv Mater 18:997–1000. https://doi.org/10.1002/adma.200501814

    Article  CAS  Google Scholar 

  33. Ullah H, Azizli K, Man ZB, Ismail MBC (2016) Synthesis and characterization of urea-formaldehyde Microcapsules containing functionalized polydimethylsiloxanes. Procedia Eng 148:168–175. https://doi.org/10.1016/j.proeng.2016.06.519

    Article  CAS  Google Scholar 

  34. Dohler D, Michael P, Binder W (2013) Part one design of self-healing materials. In: Self-healing polymers: from principles to applications, pp 5–60

  35. Wang R, Hu H, Liu W, Guo Q (2011) Preparation and characterization of self-healing polymeric materials with microencapsulated epoxy and imidazoline derivatives curing agent. 19:279–288. https://doi.org/10.1177/0967391111019004-505

  36. Yuan YC, Rong MZ, Zhang MQ et al (2008) Self-healing polymeric materials using epoxy / mercaptan as the healant. 5197–5202

  37. Jin H, Mangun CL, Stradley DS et al (2012) Self-healing thermoset using encapsulated epoxy-amine healing chemistry. Polym (Guildf) 1–7. https://doi.org/10.1016/j.polymer.2011.12.005

  38. Blaiszik BJ, Caruso MM, Mcilroy DA et al (2009) Microcapsules filled with reactive solutions for self-healing materials. Polym (Guildf) 50:990–997. https://doi.org/10.1016/j.polymer.2008.12.040

    Article  CAS  Google Scholar 

  39. Song Y, Jo Y, Lim Y et al (2013) Sunlight-Induced Self-Healing of a Microcapsule-Type Protective Coating. ACS Appl Mater Interfaces 5:1378–1384

    Article  CAS  PubMed  Google Scholar 

  40. Trask RS, Williams GJ, Bond IP et al (2007) Bioinspired self-healing of advanced composite structures using hollow glass fibres Bioinspired self-healing of advanced composite structures using hollow glass fibres. 363–371. https://doi.org/10.1098/rsif.2006.0194

  41. Dry CM, Sottos NR (1993) Passive smart self-repair in polymer matrix composite materials — University of Illinois Urbana-Champaign. Proc SPIE - Int Soc Opt Eng 1916:438–444

    CAS  Google Scholar 

  42. Toohey KS, Sottos NR, Lewis JA et al (2007) Self-healing materials with microvascular networks. 581–585. https://doi.org/10.1038/nmat1934

  43. Toohey BKS, Hansen CJ, Lewis JA et al (2009) Delivery of two-part self-healing chemistry via microvascular networks.1399–1405. https://doi.org/10.1002/adfm.200801824

  44. Hansen BCJ, Wu W, Toohey KS et al (2009) Self-healing materials with interpenetrating microvascular networks. 4143–4147. https://doi.org/10.1002/adma.200900588

  45. Hansen CJ, White SR, Sottos NR, Lewis JA (2011) Accelerated self-healing via ternary interpenetrating microvascular networks. 4320–4326. https://doi.org/10.1002/adfm.201101553

  46. Postiglione G, Alberini M, Leigh SJ et al (2017) Effect of 3D-printed microvascular network design on the self-healing behaviour of crosslinked polymers. https://doi.org/10.1021/acsami.7b01830

  47. Hamilton BAR, Sottos NR, White SR (2010) Self-healing of internal damage in synthetic vascular materials. 61801:5159–5163. https://doi.org/10.1002/adma.201002561

  48. Trask RS, Norris CJ, Bond IP (2014) Stimuli-triggered self-healing functionality in advanced fibre-reinforced composites. 25:87–97. https://doi.org/10.1177/1045389X13505006

  49. Bekas DG, Baltzis D, Paipetis AS (2017) Nano-reinforced polymeric healing agents for vascular self-repairing composites. JMADE 116:538–544. https://doi.org/10.1016/j.matdes.2016.12.049

    Article  CAS  Google Scholar 

  50. Zhu Y, Ji X, Zhi M, Qiu M (2016) Self-healing glass fi ber / epoxy composites with polypropylene tubes containing self-pressurized epoxy and mercaptan healing agents. Compos Sci Technol 135:146–152. https://doi.org/10.1016/j.compscitech.2016.09.020

    Article  CAS  Google Scholar 

  51. Al-maadeed PPV MASA (2016) TiO 2 nanotubes and mesoporous silica as containers in self-healing epoxy coatings. Nat Publ Gr 1–9. https://doi.org/10.1038/srep38812

  52. Bleay SM, Loader CB, Hawyes VJ et al (2001) A smart repair system for polymer matrix composites. Compos Part A Appl Sci Manuf 32:1767–1776. https://doi.org/10.1016/S1359-835X(01)00020-3

    Article  Google Scholar 

  53. Williams G, Trask R, Bond I (2007) A self-healing carbon fibre reinforced polymer for aerospace applications. Compos Part A Appl Sci Manuf 38:1525–1532. https://doi.org/10.1016/j.compositesa.2007.01.013

    Article  CAS  Google Scholar 

  54. Pang JWC, Bond IP (2005) ‘ Bleeding composites ’— damage detection and self-repair using a biomimetic approach. 36:183–188. https://doi.org/10.1016/j.compositesa.2004.06.016

  55. Silva ACM, Moghadam AD, Singh P, Rohatgi PK (2017) Self-healing composite coatings based on in situ micro–nanoencapsulation process for corrosion protection. J Coat Technol Res 1–29. https://doi.org/10.1007/s11998-016-9879-0

  56. Nevejans S, Ballard N, Miranda JI et al (2016) The underlying mechanisms for self-healing of poly(disulfide)s. Phys Chem Chem Phys 18:27577–27583. https://doi.org/10.1039/c6cp04028d

    Article  CAS  PubMed  Google Scholar 

  57. Garcia SJ (2014) Effect of polymer architecture on the intrinsic self-healing character of polymers. Eur Polym J 53:118–125. https://doi.org/10.1016/j.eurpolymj.2014.01.026

    Article  CAS  Google Scholar 

  58. Zhou J, Guimard NK, Inglis AJ et al (2012) Thermally reversible Diels-Alder-based polymerization: an experimental and theoretical assessment. Polym Chem 3:628–639. https://doi.org/10.1039/c1py00356a

    Article  CAS  Google Scholar 

  59. Pratama PA, Shari M, Peterson AM, Palmese GR (2013) Room temperature self-healing Thermoset based on the Diels – AlderAm403459E.Pdf. ACS Appl Mater Interfaces 12425–12431

  60. Chen X, Dam MA, Ono K et al (2002) A thermally re-mendable cross-linked polymeric material. Sci (80-) 295:1698–1702. https://doi.org/10.1126/science.1065879

    Article  CAS  Google Scholar 

  61. Scheltjens G, Diaz MM, Brancart J et al (2013) A self-healing polymer network based on reversible covalent bonding. React Funct Polym 73:413–420. https://doi.org/10.1016/j.reactfunctpolym.2012.06.017

    Article  CAS  Google Scholar 

  62. Turkenburg DH, Durant Y, Fischer HR (2017) Bio-based self-healing coatings based on thermo-reversible Diels-Alder reaction. Prog Org Coatings 111:38–46. https://doi.org/10.1016/j.porgcoat.2017.05.006

    Article  CAS  Google Scholar 

  63. Coope TS, Turkenburg DH, Fischer HR et al (2016) Novel Diels-Alder based self-healing epoxies for aerospace composites. Smart materials and structures. Springer, Singapore, Singapore, pp 15–39

    Google Scholar 

  64. Toncelli C, De Reus DC, Picchioni F, Broekhuis AA (2012) Properties of reversible diels-alder furan/maleimide polymer networks as function of crosslink density. Macromol Chem Phys 213:157–165. https://doi.org/10.1002/macp.201100405

    Article  CAS  Google Scholar 

  65. Liu Y, Hsieh C (2005) Crosslinked epoxy materials exhibiting thermal remendablility and removability from multifunctional maleimide and furan compounds. 905–913. https://doi.org/10.1002/pola.21184

  66. Tian Q, Yuan C, Rong Z, Qiu M (2009) A thermally remendable epoxy resin. 1289–1296. https://doi.org/10.1039/b811938d

  67. Parihar S, Gaur B (2022) Thermo-reversible self-healing polymeric coatings derived from gum rosin. Prog Org Coatings 168:106889. https://doi.org/10.1016/j.porgcoat.2022.106889

    Article  CAS  Google Scholar 

  68. Liu Y, Chen Y (2007) Thermally reversible cross-linked polyamides with high toughness and self-repairing ability from maleimide- and furan-functionalized aromatic polyamides. 224–232. https://doi.org/10.1002/macp.200600445

  69. Kavitha AA, Singha NK (2007) A tailor-made polymethacrylate bearing a reactive diene in reversible diels – alder reaction. 4441–4449. https://doi.org/10.1002/pola

  70. Peterson AM, Jensen RE, Palmese GR (2011) Thermoreversible and remendable glass-polymer interface for fiber-reinforced composites. Compos Sci Technol 71:586–592. https://doi.org/10.1016/j.compscitech.2010.11.022

    Article  CAS  Google Scholar 

  71. Du P, Liu X, Zheng Z et al (2013) Synthesis and characterization of linear self-healing polyurethane based on thermally reversible Diels-Alder reaction. RSC Adv 3:15475–15482. https://doi.org/10.1039/c3ra42278j

    Article  CAS  Google Scholar 

  72. Zeng C, Seino H, Ren J et al (2013) Bio-based furan polymers with self-healing ability. Polym (Guildf) 54:5351–5357. https://doi.org/10.1016/j.polymer.2013.07.059

    Article  CAS  Google Scholar 

  73. Bai N, Simon GP, Saito K (2015) Characterisation of the thermal self-healing of a high crosslink density epoxy thermoset. New J Chem 39:3497–3506. https://doi.org/10.1039/c5nj00066a

    Article  CAS  Google Scholar 

  74. Okhay N, Mignard N, Jegat C, Taha M (2013) Diels-Alder thermoresponsive networks based on high maleimide- functionalized urethane prepolymers. Des Monomers Polym 16:475–487. https://doi.org/10.1080/15685551.2012.747166

    Article  CAS  Google Scholar 

  75. Xu M, Liu N, Mo H et al (2022) Synthesis and properties of thermally self-healing PET based Linear polyurethane containing diels–alder bonds. Polym (Basel) 14:1–13. https://doi.org/10.3390/polym14163334

    Article  CAS  Google Scholar 

  76. Lee WJ, Cha SH (2020) Improvement of mechanical and self-healing properties for polymethacrylate derivatives containing maleimide modified graphene oxide. Polym (Basel) 12. https://doi.org/10.3390/polym12030603

  77. Canadell J, Goossens H, Klumperman B (2011) Self-healing materials based on disulfide links. Macromolecules 44:2536–2541. https://doi.org/10.1021/ma2001492

    Article  CAS  Google Scholar 

  78. Xu Y, Chen D (2016) A novel self-healing polyurethane based on disulfide bonds. Macromol Chem Phys 217:1191–1196. https://doi.org/10.1002/macp.201600011

    Article  CAS  Google Scholar 

  79. Ortiz RA, Berlanga OA, Valdez AEG et al (2016) Self-healing photocurable epoxy/thiol-ene systems using an aromatic epoxy resin. Adv Mater Sci Eng. https://doi.org/10.1155/2016/8245972

  80. Li ZJ, Zhong J, Liu MC et al (2020) Investigation on self-healing property of epoxy resins based on disulfide dynamic links. Chin J Polym Sci (English Ed) 38:932–940. https://doi.org/10.1007/s10118-020-2406-x

    Article  CAS  Google Scholar 

  81. Chang K, Jia H, Gu S (2019) A transparent, highly stretchable, self-healing polyurethane based on disul fi de bonds. Eur Polym J 112:822–831. https://doi.org/10.1016/j.eurpolymj.2018.11.005

    Article  CAS  Google Scholar 

  82. Yoon JA, Kamada J, Koynov K et al (2012) Self-healing polymer films based on thiol-disulfide exchange reactions and self-healing kinetics measured using atomic force microscopy. Macromolecules 45:142–149. https://doi.org/10.1021/ma2015134

    Article  CAS  Google Scholar 

  83. Zhang L, Qiu T, Sun X et al (2020) Achievement of both mechanical properties and intrinsic self-healing under body temperature in polyurethane elastomers: a synthesis strategy from waterborne polymers. Polym (Basel) 12. https://doi.org/10.3390/POLYM12040989

  84. Huang Y, Yan J, Wang D et al (2021) Construction of self-healing disulfide-linked silicone elastomers by thiol oxidation coupling reaction. Polym (Basel) 13. https://doi.org/10.3390/polym13213729

  85. Chung CM, Roh YS, Cho SY, Kim JG (2004) Crack healing in polymeric materials via photochemical [2 + 2] cycloaddition. Chem Mater 16:3982–3984. https://doi.org/10.1021/cm049394+

    Article  CAS  Google Scholar 

  86. Ghosh B, Urban MW (2009) Self-repairing oxetane-substituted chitosan polyurethane networks. Science 323(5920):1458–1460. https://doi.org/10.1126/science.1167391

  87. Froimowicz P, Frey H, Landfester K Towards the generation of self-healing materials by means of a reversible photo-induced approach. https://doi.org/10.1002/marc.201000643

  88. Ling J, Rong MZ, Zhang MQ (2011) Coumarin imparts repeated photochemical remendability to polyurethane. J Mater Chem 14473–14486. https://doi.org/10.1039/c1jm12321a

  89. Dong R, Liu Y, Zhou Y, Yan D, Zhu X (2011) Photo-reversible supramolecular hyperbranched polymer based on host–guest interactions. Polym Chem 2771–2774. https://doi.org/10.1039/c1py00426c

  90. Nishikubo T, Kudo H, Maruyama K (2009) Synthesis and properties of photo-functional hyperbranched polymers. 1–7. https://doi.org/10.1002/pat.1377

  91. Banerjee S, Tripathy R, Cozzens D et al (2015) Photoinduced smart, self-healing polymer sealant for photovoltaics. https://doi.org/10.1021/am508096c

  92. Scott BTF, Draughon RB, Bowman CN (2006) Actuation in crosslinked polymers via photoinduced stress relaxation . 2128–2132. https://doi.org/10.1002/adma.200600379

  93. Ahn D, Zavada SR, Scott TF (2017) Rapid, Photomediated Healing of Hexaarylbiimidazole-Based covalently cross-linked gels. Chem Mater 29:7023–7031. https://doi.org/10.1021/acs.chemmater.7b02640

    Article  CAS  Google Scholar 

  94. Leibler L, Cordier P, Soulie C (2008) Self-healing and thermoreversible rubber from supramolecular assembly. 451:977–980. https://doi.org/10.1038/nature06669

  95. Wang C, Liu N, Allen R et al (2013) Communication A rapid and efficient self-healing thermo-reversible elastomer crosslinked with graphene oxide. 5785–5790. https://doi.org/10.1002/adma.201302962

  96. Zeng F, Han Y, Yan Z et al (2013) Supramolecular polymer gel with multi stimuli responsive, self- healing and erasable properties generated by host e guest interactions. Polym (Guildf) 54:6929–6935. https://doi.org/10.1016/j.polymer.2013.10.048

    Article  CAS  Google Scholar 

  97. Huang L, Yi N, Wu Y et al (2013) Multichannel and repeatable self-healing of mechanical enhanced graphene-thermoplastic polyurethane composites. 2224–2228. https://doi.org/10.1002/adma.201204768

Download references

Acknowledgements

The authors are grateful to Ministry of Human Resource Development (MHRD), India as well as the National Institute of Technology Hamirpur, Himachal Pradesh, India, for funding the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharti Gaur.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parihar, S., Gaur, B. Self healing approaches in polymeric materials-an overview. J Polym Res 30, 217 (2023). https://doi.org/10.1007/s10965-023-03590-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03590-0

Keywords

Navigation