Skip to main content

Advertisement

Log in

Switching the photo physics of MDMO-PPV under PMMA environment- a boon for organic electronics

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The paper presents a fascinating photo physics of the light emitting polymer (LEP), poly2-methoxy-5-(3’,7’-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) when diluted by the solid poly methylmethacrylate (PMMA) environment. The neat MDMO-PPV exhibiting the single peak absorption at 496.6 nm and emission at 589 nm (of 0–0 transition) displays the blue and red shifted bimodal absorption and emissions simultaneously in the presence of inert PMMA matrix. Blue phase peaks are dominant for low dopant concentrations whereas the red phase peaks are dominant at higher concentrations. A switching from blue phase to red phase is due to transition from collapsed chain conformations to coupled or aggregated conformations of conjugated chains of MDMO-PPV. At low doping level, the intra-chain excitonic coupling between the transition dipoles (TDMs) of MDMO-PPV are disrupted by the PMMA matrix, whereas the intra-chain excitonic coupling is pronounced at higher doping levels in accordance with Kasha’s model of aggregation. The emissions around 525 and 530 nm correspond to MDMO-PPV oligomer precursors and that around 580 to 605 nm are due to J aggregated conjugated chains. The activation energy calculations from Broido’s, Horwitz-Metzer and Van –Kravelin methods are in good agreement, elucidating the correctness and consistency of the techniques used. Increase in the thermal stability of the samples with the increased doping level is affirmed by increase in activation energy from about 105 to 155 kJ/ mole. The XRD studies confirm the blue phase induced disorder and supported by the occurrence of the FTIR resonant peaks related to vinyl ring wagging and C = C stretching modes. Enhanced dc and conductivity increase in dielectric constant, the photo physics related parameters like energy gap, Urbach energy and Stokes shifts are reported. Highly correlated wavelength shifts and intensities of emission for both the exciting wavelengths 340 nm and 450 nm along with the unprecedented tuning of emission over wide range of the visible region with the most simple and the economic solution cast method are the novelty of this work. This invention can boost the technological aspects of plastic electronic display devices, like LED, LASER, solar cell and EM shielding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. El-Bashir SM (2019) Effect of solvent polarity on the homogeneity and photophysical properties of MDMO-PPV films: Towards efficient plastic solar cells. J King Saud Univ Sci 31(4):534–540

    Article  Google Scholar 

  2. Österbacka R, An CP, Jiang XM, Vardeny ZV (2000) Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals. Science 287:839–842

    Article  PubMed  Google Scholar 

  3. Brown PJ, Sirringhaus H, Harrison M, Shkunov M, Friend RH (2001) Optical spectroscopy of field-induced charge in self-organized high mobility poly(3-hexylthiophene). Phys Rev B 63:1252041–12520411

    Article  Google Scholar 

  4. Hancharova M, Mazur K, Halicka K, Zając D (2022) Derivatives of diphenylamine and benzothiadiazole in optoelectronic applications: a review. J Polym Res 29:417

    Article  CAS  Google Scholar 

  5. Kosyachenko LA (2011) Solar cells - new aspects and solutions. InTech, Croatia

  6. Becker H, Spreitzer H, Kreuder W, Kluge E, Schenk H, Parker I (2000) Soluble PPVs with enhanced performance a mechanistic approach. Adv Mat 12(1):42–48

    Article  CAS  Google Scholar 

  7. Méndez-Pinzón HA, Pardo-Pardo DR, Cuéllar-Alvarado JP, Salcedo-Reyes JC, Vera R, Páez-Sierra BA (2010) Analysis of the current-voltage characteristics of polymer-based organic light-emitting diodes (OLEDs) deposited by spin coating. Univ Sci 15(1):68–76

    Article  Google Scholar 

  8. Pei Q (2007) Light-Emitting Polymers. Mater Matters 2(3):26

    CAS  Google Scholar 

  9. Nicholas AK, Pradeep KR, Ben S, Ferguson JB, Rao CNR, A Müller, Cheetham AK (2005) (Eds.); Schmid (E d.) Aldrich Chem Files, 5.3, 1

  10. Silvia Luebbe D, Shawn Sapp DR (2007) New conducting and semiconducting polymers for plastic electronics. Mater Matters 2(3):11

    Google Scholar 

  11. Mozer AJ (2005) Novel regiospecific MDMO-PPV polymers with improved charge transport properties for bulk heterojunction solar cells. Synth Met 153(1–3):81–84

    Article  CAS  Google Scholar 

  12. Thompson BC, Jean D, Frechet JMJ (2007) Polymer–fullerene composite solar cells. Angew Chem Int Ed 47(1):58–77

    Article  Google Scholar 

  13. Mladenova D, Zhivkov I, Ouzzane I, Vala M, Heinrichova P, Budurova D, Weiter M (2012) Thin polyphenylene vinylene electrophoretically and spin-coated films – photoelectrical properties. J Phy Conf Ser 398:012056

    Article  Google Scholar 

  14. Saxena K, Kumar P, Jain VK (2011) Studies on the fluorescence properties of conjugated polymer poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene in presence of nitrogen dioxide gas. Synth Met 161:369–437

    Article  CAS  Google Scholar 

  15. Gündüz B (2015) Optical properties of poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene] light-emitting polymer solutions: effects of molarities and solvents. Polym Bull 72:3241–3267

    Article  Google Scholar 

  16. Kazarinov RF, Suris RA (1971) Possibility of amplification of electromagnetic waves in a semiconductor with a superlattice. Sov Phy Semicond 5:707–709

    Google Scholar 

  17. Miller DAB (1990) Quantum well optoelectronic switching devices. Int J High Speed Elec Syst 1:19–46

    Article  Google Scholar 

  18. Hood TH (1988) Multiple quantum well (MQW) waveguide modulators. J Lightwave Technol 6:743–757

    Article  Google Scholar 

  19. Gaytán I, Burelo M, Loza-Tavera H (2021) Current status on the biodegradability of acrylic polymers: microorganisms, enzymes and metabolic pathways involved. Appl Microbiol Biotechnol 105:991–1006

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fahad NK, Sabry RS (2022) Study of some mechanical and physical properties of PMMA reinforced with (TiO2 and TiO2-GO) nanocomposite for denture bases. J Polym Res 29:439

    Article  CAS  Google Scholar 

  21. Joshi MP, Shalu C, Ghosh C, Mukharjee C, Kukreja LM (2015) Charge transport properties of MDMO PPV thin films cast in different solvents. J Polym Sci Part B Polym Phys 53:1431–1439

    Article  Google Scholar 

  22. Lian Q, Chen M, Mokhtar MZ, Wu S, Zhu M, Whittaker E, Brien PO, Saunders BR (2018) Surface structure, optoelectronic properties and charge transport in ZnO nanocrystal/MDMO-PPV multilayer films. Phys Chem Chem Phys 20:12260–12271

    Article  CAS  PubMed  Google Scholar 

  23. Lee L, Ube T, Aoki H, Ito S, Lee L, Ube T, Aoki H, Ito S (2011) Characterization of surface compositions of phase-separated structures in conjugated poly(phenylene vinylene) blends by scanning near-field optical microscopy. Polymer 52:5897–5903

    Article  CAS  Google Scholar 

  24. Jarzab D, Lu M, Necolai HT, Blom PWM, Loi MA (2011) Photoluminescence of conjugated polymer blends at the nanoscale. Soft Matter 7:1702–1707

    Article  CAS  Google Scholar 

  25. Wise AJ, Martin TP, Kori JG, Geest VD, Grey JK (2010) Observation of the missing mode effect in a poly-phenylenevinylene derivative: Effect of solvent, chain packing and composition. J Chem Phys 133:174901

    Article  PubMed  Google Scholar 

  26. Wakahara T, Miyazawa K, Ito O, Tanoak N (2016) Preparation of composite films of a conjugated polymer and C60NWs and their photovoltaic application. J Nanomat 2016:2016–2021

    Article  Google Scholar 

  27. Offermans T, van Hal PA, Meskers SCJ, Koetse MM, Janssen RAJ (2005) Exciplex dynamics in a blend of π-conjugated polymers with electron donating and accepting properties: MDMO-PPV and PCNEPV. Phy Rev B 72(4):1–11

    Article  Google Scholar 

  28. Patel G, Sureshkumar MB, Patel P (2012) Effect of TiO2 on optical properties of PMMA: An optical characterization. Adv Mater Res 383–390:3249–3256

    Google Scholar 

  29. Omer BM (2013) optical properties of mdmo-ppv and mdmo-ppv/ [6,6]-phenyl c61-butyric acid 3- ethylthiophene ester thin films. Int J Org Electr 2(2):1–7

    Article  Google Scholar 

  30. El-Bashir S, Alenazi W, AlSalhi M (2017) Optical dispersion parameters and stability of poly (9,9’-di-n-octylfluorenyl-2.7-diyl)/ZnO nanohybrid films: towards organic photovoltaic applications. Mater Res Express 4:025503

    Article  Google Scholar 

  31. Nguyen TQ, Doan V, Schwartz BJ (1999) Conjugated polymer aggregates in solution: Control of interchain interactions. J Chem Phys 110:4068–4078

    Article  CAS  Google Scholar 

  32. Cravino A, Neugebauer H, Luzzati S, Castellani M, Petr A, Dunsch L, Sariciftci NS (2002) Positive and negative charge carriers in doped or photoexcited polydithienothiophenes: a comparative study using raman, infrared, and electron spin resonance spectroscopy. J Phys Chem B 106:3583–3592

    Article  CAS  Google Scholar 

  33. Syromyatnikov V, Pomaz I, Verbitsky A, Vertsimakha Y, Nešpůrek S, Pochekaylov S (2009) Photosensitive in wide spectral region composites based on polyphenylenevinylene, Semiconductor Physics. Semicond Phys Quant Electr Optoelectr 12:01–07

    Article  CAS  Google Scholar 

  34. So PTC, Dong CY (2002) Fluorescence spectrophotometry. Encyclopedia of life sciences & Macmillan Publishers Ltd, Nature Publishing Group

    Google Scholar 

  35. Cossiello RF, Akcelrud L, Atvars TDZ (2005) Solvent and molecular weight effects on fluorescence emission of MEH-PP. J Braz Chem Sci 6(1):74–86

    Article  Google Scholar 

  36. Sreelekha G, Vidya G, Joseph R, Prathapan S, Radhakrishnan P, Vallabhan CPG, Nampoori VPN (2011) Multimode emissions from MEH-PPV blended with polystyrene film waveguides. Int J Opt Photon 5(2):111–120

    Google Scholar 

  37. Strickler SJ, Berg RA (1962) Relationship between absorption intensity and fluorescence lifetime of molecules. J Chem Phys 37:814

    Article  CAS  Google Scholar 

  38. Spano FC, Silva C (2014) H- and J-aggregate behavior in polymeric semiconductors. Annu Rev Phys Chem 65:477–500

    Article  CAS  PubMed  Google Scholar 

  39. Baseer RA, Ewies EF, Ismail AM (2022) Synthesis, optical and dielectric properties ofpolyacryloyloxy imino fluorophenyl acetamide and polyacryloyloxy imino fluorophenyl acetamide-co-polystyrene sulfonate. J Polym Res 29:304

    Article  CAS  Google Scholar 

  40. Kaiser C, Sandberg OJ, Zarrabi N, Li W, Meredith P, Armin A (2021) Universal Urbach rule for disordered organic semiconductors Nat Commun 12:3988

    CAS  PubMed  Google Scholar 

  41. Liquori AM, Anzuino Q, Coiro VM, Alagni MD, Desantis P, Savino M (1965) Nature 206:358

    Article  CAS  Google Scholar 

  42. Rosema M, Mas Haris H, Kathiresan S, Mohan S (2010) FT-IR and FT-Raman spectra and normal coordinate analysis of poly methyl methacrylate. Der Pharma Chemica 2(4):316–323

    Google Scholar 

  43. Song M, Long F (1991) Miscibility in blends of poly(vinyl acetate) with poly(methyl methacrylate) studied by FTIR and DSC. Eur Polym J 27(9):983–986

    Article  CAS  Google Scholar 

  44. Alshamari AK, Sayed WM (2016) Synthesis and structure of poly(methyl methacrylate) (PMMA) nanoparticles in the presence of various surfactants. Chem Sci Rev Lett 5(17):161–169

    CAS  Google Scholar 

  45. Rees MH, Jones RA (1973) Time dependent studies of the aurora—II. Spectroscopic morphology. Planet Space Sci 21(7):1213–1235

    Article  CAS  Google Scholar 

  46. Katsikas L, Velickovic JS, Weller H, Popovic IG (1997) Thermogravimetric characterisation of poly(methyl methacrylate) photopolymerised by colloidal cadmium sulphide. J Therm Anal 49:317–323

    Article  CAS  Google Scholar 

  47. Abd-El Kader FH, Osman WH, Hafez RS (2012) Effect of blend ratio on thermal and optical properties OF PMMA/ PVAc films. Int J Cur Res 4(01):149–156

    Google Scholar 

  48. El-Zaher NA, Melegy MS, Guirguis OW (2014) Thermal and structural analyses of PMMA/TiO2 nanoparticles composites. Natural Sci 6:859–870

    Article  Google Scholar 

  49. Thomas P, Ernest Ravindran RS, Varma KBR (2014) Structural, Thermal and Electrical properties of Poly(methyl methacrylate)/CaCu3Ti4O12 composites fabricated via melt mixing. J Ther Analy Calorim 115(2):1311–1319

    Article  CAS  Google Scholar 

  50. Heinrichov P, Zhivkov I, Mladenov D, David J, Vala M, Weiter M (2012) The study of the influence of deposition method on electrical and optical properties of PPV polymer with high glass temperature. J Phy Conf Ser 398:012057

    Article  Google Scholar 

  51. Hegde S, Ravindrachary V, Praveena SD, Ismayil G, Swamy B, Sagar RN (2020) Microstructural, dielectric, and transport properties of proton-conducting solid polymer electrolyte for battery applications. Ionics 26:2379–2394

    Article  CAS  Google Scholar 

  52. Zhang L, Huang M, Zhou C (2013) Thermal stability and decomposition kinetics of polysuccinimide. Am J Analyt Chem 4:749–755

    Article  Google Scholar 

  53. Al-Rasheed HH, Mohammady SZ, Dahlous K, Siddiqui RH, El-Faham A (2020) Synthesis, characterization, thermal stability and kinetics of thermal degradation of novel polymers based-s-triazine Schiff base. J Polym Res 27:10

    Article  CAS  Google Scholar 

  54. Broido BA (1969) A simple, sensitive graphical method of treating thermogravimetric analysis data. J Polym Sci Part A-2 7(10):1761–1773

    CAS  Google Scholar 

  55. Horowitz HH, Metzger G (1963) A new analysis of thermogravimetric traces. Analyt Chem 35(10):1464–1468

    Article  CAS  Google Scholar 

  56. Van Krevelen DW, Hoftyzen PJ (1980) Properties of Polymers, Elsevier Scientific, Amsterdam, The Netherlands

  57. Reddy MR, Reddy MJ, Subrahmanyam AR (2017) Structural, thermal and optical properties of PMMA, PEO and PMMA/PEO/LiClO4 polymer electrolyte blends. Material Sci Res India 14(2):123–127

    Article  CAS  Google Scholar 

  58. Satish S, Chandar Shekhar B (2014) Preparation and characterization of nano scale PMMA thin films. Ind J Pure and Appl Phy 52(1):64–67

    Google Scholar 

  59. Martynyuk GV, Aksimentyeva OI (2020) Features of charge transport in polymer composites polymethylmethacrylate - polyaniline. Phys Chem Solid State 21:319–324

    Article  CAS  Google Scholar 

  60. El-Khiyami SS, Hafez RS (2021) Dielectric study and Cole-Cole plots of poly(methyl methacrylate) doped with nanostructured metal oxides. J Polym Res 28:396

    Article  CAS  Google Scholar 

  61. Rana A, Thakur OP, Kumar V (2011) Effect of Gd3+ substitution on dielectric properties of nano cobalt ferrite. Mater Lett 65(19–20):3191–3192

    Article  CAS  Google Scholar 

  62. Naik J, Bhajantri RF, Rathod SG, Sheela T, Ravindrachary V (2016) Synthesis and characterization of multifunctional ZnBr 2/PVA polymer dielectrics. J Adv Dielect 6(4):1650028

    Article  CAS  Google Scholar 

  63. Rehim MA, Turky G (2022) Epoxy resin reinforced with graphene derivatives: physical and dielectric properties. J Polym Res 29:120

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Microtron Center and PURSE Lab of Mangalore University for providing instrumentation facility to carry out electrical studies, TGA, DSC and FTIR investigations. We are grateful to USIC, Karnataka university and Innovation Center of Manipal Institute of Technology (MIT) regarding UV-Visible, fluorescence and XRD characterizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ishwar Naik or R. F. Bhajantri.

Ethics declarations

Conflict of interest

All the authors confirm that they have no financial.or commercial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, I., Bhajantri, R.F., Bhat, V. et al. Switching the photo physics of MDMO-PPV under PMMA environment- a boon for organic electronics. J Polym Res 30, 133 (2023). https://doi.org/10.1007/s10965-023-03511-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03511-1

Keywords

Navigation