Skip to main content
Log in

Preparation of adsorption resin and itas application in VOCs adsorption

  • Review Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Adsorption resins are synthetic polymers that rely on their adsorption effect to achieve concentration and separation of organic substances. Adsorption resins are becoming more and more important in various fields due to their stable physicochemical properties and better adsorption performance. As one of the important atmospheric pollutants, volatile organic compounds (VOCs) have been studied intensively by adsorption of VOCs such as activated carbon. In recent years, adsorption resins, with their more suitable pore structure, higher specific surface area and better hydrophobicity, have also gradually become a research hotspot in the field of VOCs treatment, and have shown good application prospects. Therefore, in this paper, the preparation and modification methods of adsorption resin were reviewed by summarizing the relevant literature in recent years; Molecular dynamics simulation of adsorption resin; Study on the adsorption of different kinds of VOCs by adsorption resin; The main problems that affect the performance of VOCs adsorption resin are discussed, and the existing problems and the future development of VOCs adsorption resin are prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Zhu L, Shen D, Luo KH (2020) A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods. J Hazard Mater 389:122102

    Article  CAS  PubMed  Google Scholar 

  2. Li L, Sun Z, Li H et al (2012) Effects of activated carbon surface properties on the adsorption of volatile organic compounds. J Air Waste Manag Assoc 62(10):1196–1202

    Article  CAS  PubMed  Google Scholar 

  3. Mohammad NK, Ghaemi A, Tahvildari K (2019) Hydroxide modified activated alumina as an adsorbent for CO2 adsorption: experimental and modeling. Int J Greenhouse Gas Control 88:24–37

    Article  CAS  Google Scholar 

  4. Zhang YN, Wang RZ, Li TX (2018) Thermochemical characterizations of high-stable activated alumina/LiCl composites with multistage sorption process for thermal storage. Energy 156:240–249

    Article  CAS  Google Scholar 

  5. Sah RP, Choudhury B, Das RK (2015) A review on adsorption cooling systems with silica gel and carbon as adsorbents. Renew Sustain Energy Rev 45:123–134

    Article  CAS  Google Scholar 

  6. Ogata T, Narita H, Tanaka M (2015) Adsorption behavior of rare earth elements on silica gel modified with diglycol amic acid. Hydrometallurgy 152:178–182

    Article  CAS  Google Scholar 

  7. Eum K, Jayachandrababu KC, Rashidi F et al (2015) Highly tunable molecular sieving and adsorption properties of mixed-linker zeolitic imidazolate frameworks. J Am Chem Soc 137(12):4191–4197

    Article  CAS  PubMed  Google Scholar 

  8. Costa JAS, de Jesus RA, da Silva CMP et al (2017) Efficient adsorption of a mixture of polycyclic aromatic hydrocarbons (PAHs) by Si–MCM–41 mesoporous molecular sieve. Powder Technol 308:434–441

    Article  CAS  Google Scholar 

  9. Lou S, Liu Y, Bai Q (2012) Adsorption mechanism of macroporous adsorption resins. Prog Chem 24(08):1427

    CAS  Google Scholar 

  10. Lin SH, Juang RS (2009) Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: a review. J Environ Manage 90(3):1336–1349

    Article  CAS  PubMed  Google Scholar 

  11. Bhanja P, Modak A, Bhaumik A (2019) Porous organic polymers for CO2 storage and conversion reactions. ChemCatChem 11(1):244–257

    Article  CAS  Google Scholar 

  12. Tolmacheva VV, Yarykin DI, Serdiuk ON et al (2018) Adsorption of catecholamines from their aqueous solutions on hypercrosslinked polystyrene. React Funct Polym 131:56–63

    Article  CAS  Google Scholar 

  13. Ahmadi Y, Kim KH (2022) Recent progress in the development of hyper-cross-linked polymers for adsorption of gaseous volatile organic compounds. Polym Rev 1–29

  14. Hoang AT, Kumar S, Lichtfouse E et al (2022) Remediation of heavy metal polluted waters using activated carbon from lignocellulosic biomass: An update of recent trends. Chemosphere 134825

  15. Ma Y, Wu Q, Xie Y et al (2020) Recent advances in organotemplate-free synthesis of zeolites. Curr Opin Green Sustai Chem 25:100363

    Article  Google Scholar 

  16. Tan H, Zhou Y, Qiao SZ et al (2021) Metal organic framework (MOF) in aqueous energy devices. Mater Today 48:270–284

    Article  CAS  Google Scholar 

  17. Fu L, Zhu J, Huang W et al (2020) Preparation of nano-porous carbon-silica composites and its adsorption capacity to volatile organic compounds. Processes 8(3):372

    Article  CAS  Google Scholar 

  18. Son YS (2017) Decomposition of VOCs and odorous compounds by radiolysis: a critical review. Chem Eng J 316:609–622

    Article  CAS  Google Scholar 

  19. Wang JD, Lü JZ, Li WJ et al (2018) Pollution characteristics and emission coefficients of volatile organic compounds from the packaging and printing industry in Zhejiang Province. Huan Jing ke Xue= Huanjing Kexue 39(8):3552–3556

  20. Balasubramanian P, Philip L, Bhallamudi SM (2012) Biotrickling filtration of VOC emissions from pharmaceutical industries. Chem Eng J 209:102–112

    Article  CAS  Google Scholar 

  21. Li X, Zhang L, Yang Z et al (2020) Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review. Sep Purif Technol 235:116213

    Article  CAS  Google Scholar 

  22. Wang Y, Gan Y, Huang J (2020) Hyper-cross-linked phenolic hydroxyl polymers with hierarchical porosity and their efficient adsorption performance. Ind Eng Chem Res 59(24):11275–11283

    Article  CAS  Google Scholar 

  23. Zhang M, Hou S, Li Y et al (2022) Swelling characterization of ionic responsive superabsorbent resin containing carboxylate sodium groups. React Funct Polym 170:105144

    Article  CAS  Google Scholar 

  24. Wang T, Shen C, Wang N et al (2019) Adsorption of 3-Aminoacetanilide from aqueous solution by chemically modified hyper-crosslinked resins: Adsorption equilibrium, thermodynamics and selectivity. Colloids Surf A 575:346–351

    Article  CAS  Google Scholar 

  25. Shen J, Wang X, Zhang L et al (2018) Size-selective adsorption of methyl orange using a novel nano-composite by encapsulating HKUST-1 in hyper-crosslinked polystyrene networks. J Clean Prod 184:949–958

    Article  CAS  Google Scholar 

  26. Shi C, Li Y, Li X et al (2021) Preparation of macroporous high adsorbent resin and its application for heavy metal ion removal. ChemistrySelect 6(34):9038–9045

    Article  CAS  Google Scholar 

  27. Zhang M, Li A, Zhou Q et al (2014) Effect of pore size distribution on tetracycline adsorption using magnetic hypercrosslinked resins. Microporous Mesoporous Mater 184:105–111

    Article  CAS  Google Scholar 

  28. Favvas EP, Kouvelos EP, Papageorgiou SK et al (2015) Characterization of natural resin materials using water adsorption and various advanced techniques. Appl Phys A 119(2):735–743

    Article  CAS  Google Scholar 

  29. Silva RA, Hawboldt K, Zhang Y (2018) Application of resins with functional groups in the separation of metal ions/species–a review. Miner Process Extr Metall Rev 39(6):395–413

    Article  CAS  Google Scholar 

  30. Zhang T, Zhou F, Huang J et al (2018) Ethylene glycol dimethacrylate modified hyper-cross-linked resins: Porogen effect on pore structure and adsorption performance. Chem Eng J 339:278–287

    Article  CAS  Google Scholar 

  31. Wang Q, Zhao H, Xue X et al (2020) Identification of acacia honey treated with macroporous adsorption resins using HPLC-ECD and chemometrics. Food Chem 309:125656

    Article  CAS  PubMed  Google Scholar 

  32. Yang M (2020) Review on factors influencing separation and purification of Chinese materia medica components by macroporous adsorption resin. Chin Tradit Herb Drugs 4050–4058

  33. Nekouei RK, Pahlevani F, Assefi M et al (2019) Selective isolation of heavy metals from spent electronic waste solution by macroporous ion-exchange resins. J Hazard Mater 371:389–396

    Article  CAS  PubMed  Google Scholar 

  34. Wang X, Su J, Chu X et al (2021) Adsorption and desorption characteristics of total flavonoids from Acanthopanax senticosus on macroporous adsorption resins. Molecules 26(14):4162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tao Y, Wu Y, Han Y et al (2020) Insight into mass transfer during ultrasound-enhanced adsorption/desorption of blueberry anthocyanins on macroporous resins by numerical simulation considering ultrasonic influence on resin properties. Chem Eng J 380:122530

    Article  Google Scholar 

  36. Davankov VA, Ilyin MM, Tsyurupa MP et al (1996) From a dissolved polystyrene coil to an intramolecularly-hyper-cross-linked “nanosponge”. Macromolecules 29(26):8398–8403

    Article  CAS  Google Scholar 

  37. Davankov VA, Tsyurupa MP (1990) Structure and properties of hypercrosslinked polystyrene—the first representative of a new class of polymer networks. React Polym 13(1–2):27–42

    Article  CAS  Google Scholar 

  38. Shen S, Zhang X, Fan L (2008) Hyper-cross-linked resins with controllable pore structure. Mater Lett 62(16):2392–2395

    Article  CAS  Google Scholar 

  39. Yao L, Zhang L, Long B et al (2021) N-heterocyclic hyper-cross-linked polymers for rapid and efficient adsorption of organic pollutants from aqueous solution. J Mol Liq 325:115002

    Article  CAS  Google Scholar 

  40. Abbuni K (2003) Adsorption of phenol and p-chlorophenol from their single and bisolute aqueous solutions on Amberlite XAD-16 resin. J Hacard Mater 105(I):143–156

    Article  Google Scholar 

  41. Ku Y, Lee KC (2000) Removal of phenols from aqueous solution by XAD-4 resin. J Hazard Mater 80(1–3):59–68

    Article  CAS  PubMed  Google Scholar 

  42. Fontanals N, Cortes J (2005) Synthesis of Davankov-type hypercrosslinked resins using different isomer compositions of vinylbenzyl chloride monomer, and application in the solid-phase extraction of polar compounds. J Polym Sci Part A Polym Chem 43(8):1718–1728

    Article  CAS  Google Scholar 

  43. Yang Z, Huang X, Yao X et al (2018) Thiourea modified hyper-crosslinked polystyrene resin for heavy metal ions removal from aqueous solutions. J Appl Polym Sci 135(1):45568

    Article  Google Scholar 

  44. Zeng X, Huang J (2020) Anisole-modified hyper-cross-linked resins for efficient adsorption of aniline from aqueous solution. J Colloid Interface Sci 569:177–183

    Article  CAS  PubMed  Google Scholar 

  45. Zeng X, Wang Y, Shu Z et al (2020) Hydroquinone-modified hyper-crosslinked polymer and its adsorption of aniline. Chem Eng J Adv 1:100004

    Article  CAS  Google Scholar 

  46. Mazlan SNA, Jamari SS (2019) Factorial experimental design for superabsorbent carbonaceous polymer through inverse suspension polymerization method//IOP Conference Series: Materials Science and Engineering. IOP Publishing 523(1):012021

    Google Scholar 

  47. Chaudhary V, Sharma S (2019) Suspension polymerization technique: parameters affecting polymer properties and application in oxidation reactions. J Polym Res 26(5):1–12

    Article  CAS  Google Scholar 

  48. Bai J, Ma X, Gong C et al (2020) A novel amidoxime functionalized porous resins for rapidly selective uranium uptake from solution. J Mol Liq 320:114443

    Article  CAS  Google Scholar 

  49. Li J, Zhang K, Zhang M et al (2018) Fabrication of a fast-swelling superabsorbent resin by inverse suspension polymerization. J Appl Polym Sci 135(15):46142

    Article  Google Scholar 

  50. Zhou XM, Chuai CZ (2010) Synthesis and characterization of a novel high-oil-absorbing resin. J Appl Polym Sci 115(6):3321–3325

    Article  CAS  Google Scholar 

  51. Zeng X, Chen H, Zheng Y et al (2012) Enhanced adsorption of puerarin onto a novel hydrophilic and polar modified post-crosslinked resin from aqueous solution. J Colloid Interface Sci 385(1):166–173

    Article  CAS  PubMed  Google Scholar 

  52. Davankov VA, Rogoshin SV, Tsyurupa MP (1974) Macronet isoporous gels through crosslinking of dissolved polystyrene. J Polym Sci Polym Symp 47(1):95–101

    Article  CAS  Google Scholar 

  53. Davankov VA, Tsyurupa MP (1980) Macronet isoporous styrene copolymers: Unusual structure and properties. Angew Makromol Chem 91(1):127–142

    Article  CAS  Google Scholar 

  54. Ghafari M, Atkinson JD (2017) One-step hyper-cross-linking of porous styrenic polymers using dichloroalkane cross-linkers to maintain hydrophobicity. Polymer 116:278–286

    Article  CAS  Google Scholar 

  55. Germain J, Fréchet JMJ, Svec F (2007) Hypercrosslinked polyanilines with nanoporous structure and high surface area: potential adsorbents for hydrogen storage. J Mater Chem 17(47):4989–4997

    Article  CAS  Google Scholar 

  56. Li B, Huang X, Liang L et al (2010) Synthesis of uniform microporous polymer nanoparticles and their applications for hydrogen storage. J Mater Chem 20(35):7444–7450

    Article  CAS  Google Scholar 

  57. Shao L, Huang J (2017) Controllable synthesis of N-vinylimidazole-modified hyper-cross-linked resins and their efficient adsorption of p-nitrophenol and o-nitrophenol. J Colloid Interface Sci 507:42–50

    Article  CAS  PubMed  Google Scholar 

  58. Jiang X, Huang J (2016) Adsorption of Rhodamine B on two novel polar-modified post-cross-linked resins: Equilibrium and kinetics. J Colloid Interface Sci 467:230–238

    Article  CAS  PubMed  Google Scholar 

  59. Fu Z, Huang J (2017) Polar hyper-cross-linked resin with abundant micropores/mesopores and its enhanced adsorption toward salicylic acid: Equilibrium, kinetics, and dynamic operation. Fluid Phase Equilib 438:1–9

    Article  CAS  Google Scholar 

  60. Castaldo R, Ambrogi V, Avolio R et al (2019) Functional hyper-crosslinked resins with tailored adsorption properties for environmental applications. Chem Eng J 362:497–503

    Article  CAS  Google Scholar 

  61. Castaldo R, Avolio R, Cocca M et al (2021) Amino-functionalized hyper-crosslinked resins for enhanced adsorption of carbon dioxide and polar dyes. Chem Eng J 418:129463

    Article  CAS  Google Scholar 

  62. Sang Y, Chen G, Huang J (2020) Oxygen-rich porous carbons from carbonyl modified hyper-cross-linked polymers for efficient CO2 capture. J Polym Res 27(2):1–8

    Article  Google Scholar 

  63. Yu X, Hao J, Xi Z et al (2019) Investigation of low concentration SO2 adsorption performance on different amine-modified Merrifield resins. Atmos Pollut Res 10(2):404–411

    Article  CAS  Google Scholar 

  64. Jin J, Feng T, Ma Y et al (2017) Novel magnetic carboxyl modified hypercrosslinked resins for effective removal of typical PPCPs. Chemosphere 185:563–573

    Article  CAS  PubMed  Google Scholar 

  65. Chen K, Lyu H, Hao S et al (2015) Separation of phenolic compounds with modified adsorption resin from aqueous phase products of hydrothermal liquefaction of rice straw. Biores Technol 182:160–168

    Article  CAS  Google Scholar 

  66. Zhou F, Huang J, Man R (2018) Hydrogen bonding of acylamino-modified macroporous cross-linked polystyrene resins with phenol. J Chem Eng Data 63(6):1917–1924

    Article  CAS  Google Scholar 

  67. Ma J, Nie Y, Wang B (2018) Simulation study on the relationship between the crosslinking degree and structure, hydrophobic behavior for poly (styrene-co-divinylbenzene) copolymer. J Mol Struct 1173:120–127

    Article  CAS  Google Scholar 

  68. Glagolev MK, Lazutin AA, Vasilevskaya VV et al (2016) Influence of cross-linking rate on the structure of hypercrosslinked networks: Multiscale computer simulation. Polymer 86:168–175

    Article  CAS  Google Scholar 

  69. Abbott LJ, Colina CM (2014) Formation of microporosity in hyper-cross-linked polymers. Macromolecules 47(15):5409–5415

    Article  CAS  Google Scholar 

  70. Montero-Montoya R, López-Vargas R, Arellano-Aguilar O (2018) Volatile organic compounds in air: sources, distribution, exposure and associated illnesses in children. Ann Glob Health 84(2):225

    Article  PubMed  PubMed Central  Google Scholar 

  71. Yu H, Guenther A, Gu D et al (2017) Airborne measurements of isoprene and monoterpene emissions from southeastern US forests. Sci Total Environ 595:149–158

    Article  CAS  PubMed  Google Scholar 

  72. Antonelli M, Donelli D, Barbieri G et al (2020) Forest volatile organic compounds and their effects on human health: A state-of-the-art review. Int J Environ Res Public Health 17(18):6506

    Article  PubMed  PubMed Central  Google Scholar 

  73. Liu H, Yu Y, Shao Q et al (2019) Porous polymeric resin for adsorbing low concentration of VOCs: Unveiling adsorption mechanism and effect of VOCs’ molecular properties. Sep Purif Technol 228:115755

    Article  CAS  Google Scholar 

  74. Wang HL, Nie L, Li J et al (2013) Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries. Chin Sci Bull 58(7):724–730

    Article  CAS  Google Scholar 

  75. Hong-Li W, Sheng-Ao J, Sheng-Rong L et al (2017) Volatile organic compounds (VOCs) source profiles of on-road vehicle emissions in China. Sci Total Environ 607:253–261

    Article  PubMed  Google Scholar 

  76. Huang B, Lei C, Wei C et al (2014) Chlorinated volatile organic compounds (Cl-VOCs) in environment—sources, potential human health impacts, and current remediation technologies. Environ Int 71:118–138

    Article  CAS  PubMed  Google Scholar 

  77. Bari MA, Kindzierski WB (2018) Ambient volatile organic compounds (VOCs) in Calgary, Alberta: Sources and screening health risk assessment. Sci Total Environ 631:627–640

    Article  PubMed  Google Scholar 

  78. Varela-Gandía FJ, Berenguer-Murcia Á, Lozano-Castelló D et al (2013) Total oxidation of naphthalene using palladium nanoparticles supported on BETA, ZSM-5, SAPO-5 and alumina powders. Appl Catal B 129:98–105

    Article  Google Scholar 

  79. Gałęzowska G, Chraniuk M, Wolska L (2016) In vitro assays as a tool for determination of VOCs toxic effect on respiratory system: A critical review. TrAC Trends Anal Chem 77:14–22

    Article  Google Scholar 

  80. Klett C, Duten X, Tieng S et al (2014) Acetaldehyde removal using an atmospheric non-thermal plasma combined with a packed bed: Role of the adsorption process. J Hazard Mater 279:356–364

    Article  CAS  PubMed  Google Scholar 

  81. Kamal MS, Razzak SA, Hossain MM (2016) Catalytic oxidation of volatile organic compounds (VOCs)–A review. Atmos Environ 140:117–134

    Article  CAS  Google Scholar 

  82. Xu Z, Huang X, Nie W et al (2017) Influence of synoptic condition and holiday effects on VOCs and ozone production in the Yangtze River Delta region, China. Atmos Environ 168:112–124

    Article  CAS  Google Scholar 

  83. Blommaerts N, Dingenen F, Middelkoop V et al (2018) Ultrafast screening of commercial sorbent materials for VOC adsorption using real-time FTIR spectroscopy. Sep Purif Technol 207:284–290

    Article  CAS  Google Scholar 

  84. Yang Z, Lan Y, Yan Y et al (2019) Activation Pathway of C-H and C-C Bonds of Ethane by Pd Atom with CO2 as a Soft Oxidant. ChemistrySelect 4(33):9608–9617

    Article  CAS  Google Scholar 

  85. Liang X, Chen X, Zhang J et al (2017) Reactivity-based industrial volatile organic compounds emission inventory and its implications for ozone control strategies in China. Atmos Environ 162:115–126

    Article  CAS  Google Scholar 

  86. Meng QB, Yang GS, Lee YS (2013) Preparation of highly porous hypercrosslinked polystyrene adsorbents: Effects of hydrophilicity on the adsorption and microwave-assisted desorption behavior toward benzene. Microporous Mesoporous Mater 181:222–227

    Article  CAS  Google Scholar 

  87. Long C, Li Y, Yu W et al (2012) Removal of benzene and methyl ethyl ketone vapor: comparison of hypercrosslinked polymeric adsorbent with activated carbon. J Hazard Mater 203:251–256

    Article  PubMed  Google Scholar 

  88. Wang J, Wang WQ, Hao Z et al (2016) A superhydrophobic hyper-cross-linked polymer synthesized at room temperature used as an efficient adsorbent for volatile organic compounds. RSC Adv 6(99):97048–97054

    Article  CAS  Google Scholar 

  89. Zhou B, Sun B, Qiu W et al (2019) Adsorption/desorption of toluene on a hypercrosslinked polymeric resin in a highly humid gas stream. Chin J Chem Eng 27(4):863–868

    Article  CAS  Google Scholar 

  90. Ghafari M, Atkinson JD (2018) Impact of styrenic polymer one-step hyper-cross-linking on volatile organic compound adsorption and desorption performance. J Hazard Mater 351:117–123

    Article  CAS  PubMed  Google Scholar 

  91. Huang W, Lü Y (2010) Oil vapor adsorbents and their modification technology. Chin J Environ Eng 4(9):1926–1931

    CAS  Google Scholar 

  92. Abiko H, Furuse M, Takano T (2010) Quantitative evaluation of the effect of moisture contents of coconut shell activated carbon used for respirators on adsorption capacity for organic vapors. Ind Health 48(1):52–60

    Article  CAS  PubMed  Google Scholar 

  93. Jia L, Yu W, Long C et al (2014) Adsorption equilibrium and dynamics of gasoline vapors onto polymeric adsorbents. Environ Sci Pollut Res 21(5):3756–3763

    Article  CAS  Google Scholar 

  94. Zhang L, Song X, Wu J et al (2012) Preparation and characterization of micro-mesoporous hypercrosslinked polymeric adsorbent and its application for the removal of VOCs. Chem Eng J 192:8–12

    Article  CAS  Google Scholar 

  95. Long C, Yu W, Li A (2013) Adsorption of n-hexane vapor by macroporous and hypercrosslinked polymeric resins: Equilibrium and breakthrough analysis. Chem Eng J 221:105–110

    Article  CAS  Google Scholar 

  96. Wu J, Zhang L, Long C et al (2012) Adsorption characteristics of pentane, hexane, and heptane: comparison of hydrophobic hypercrosslinked polymeric adsorbent with activated carbon. J Chem Eng Data 57(12):3426–3433

    Article  CAS  Google Scholar 

  97. Ma X, Zhang Z, Wu H et al (2019) Adsorption of volatile organic compounds at medium-high temperature conditions by activated carbons. Energy Fuels 34(3):3679–3690

    Article  Google Scholar 

  98. Xiao G, Wen R, You P et al (2017) Adsorption of phenol onto four hyper-cross-linked polymeric adsorbents: effect of hydrogen bonding receptor in micropores on adsorption capacity. Microporous Mesoporous Mater 239:40–44

    Article  CAS  Google Scholar 

  99. Xie X, Wang J, Zheng J et al (2018) Low-cost Scholl-coupling microporous polymer as an efficient solid-phase microextraction coating for the detection of light aromatic compounds. Anal Chim Acta 1029:30–36

    Article  CAS  PubMed  Google Scholar 

  100. Huang J, Jin X, Deng S (2012) Phenol adsorption on an N-methylacetamide-modified hypercrosslinked resin from aqueous solutions. Chem Eng J 192:192–200

    Article  CAS  Google Scholar 

  101. Zeng Q, Li M, Xie SH et al (2013) Baseline blood trihalomethanes, semen parameters and serum total testosterone: a cross-sectional study in China. Environ Int 54:134–140

    Article  CAS  PubMed  Google Scholar 

  102. Malaguarnera G, Cataudella E, Giordano M et al (2012) Toxic hepatitis in occupational exposure to solvents. World J Gastroenterol WJG 18(22):2756

    Article  CAS  PubMed  Google Scholar 

  103. Long C, Li Q, Li Y et al (2010) Adsorption characteristics of benzene–chlorobenzene vapor on hypercrosslinked polystyrene adsorbent and a pilot-scale application study. Chem Eng J 160(2):723–728

    Article  CAS  Google Scholar 

  104. Long C, Liu P, Li Y et al (2011) Characterization of hydrophobic hypercrosslinked polymer as an adsorbent for removal of chlorinated volatile organic compounds. Environ Sci Technol 45(10):4506–4512

    Article  CAS  PubMed  Google Scholar 

  105. Wang S, Zhang L, Long C et al (2014) Enhanced adsorption and desorption of VOCs vapor on novel micro-mesoporous polymeric adsorbents. J Colloid Interface Sci 428:185–190

    Article  CAS  PubMed  Google Scholar 

  106. Kuang W, Liu YN, Huang J (2017) Phenol-modified hyper-cross-linked resins with almost all micro/mesopores and their adsorption to aniline. J Colloid Interface Sci 487:31–37

    Article  CAS  PubMed  Google Scholar 

  107. Byun Y, Je SH, Talapaneni SN et al (2019) Advances in porous organic polymers for efficient water capture. Chem Eur J 25(44):10262–10283

    Article  CAS  PubMed  Google Scholar 

  108. Liu L, Tan SJ, Horikawa T et al (2017) Water adsorption on carbon-A review. Adv Coll Interface Sci 250:64–78

    Article  CAS  Google Scholar 

  109. Wang G, Dou B, Wang J et al (2013) Adsorption properties of benzene and water vapor on hyper-cross-linked polymers. RSC Adv 3(43):20523–20531

    Article  CAS  Google Scholar 

  110. Long C, Li Y, Yu W et al (2012) Adsorption characteristics of water vapor on the hypercrosslinked polymeric adsorbent. Chem Eng J 180:106–112

    Article  CAS  Google Scholar 

  111. Wang WQ, Wang J, Chen JG et al (2015) Synthesis of novel hyper-cross-linked polymers as adsorbent for removing organic pollutants from humid streams. Chem Eng J 281:34–41

    Article  CAS  Google Scholar 

  112. Yuan D, Lu W, Zhao D et al (2011) Highly stable porous polymer networks with exceptionally high gas-uptake capacities. Adv Mater 23(32):3723–3725

    Article  CAS  PubMed  Google Scholar 

  113. Tan L, Tan B (2017) Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chem Soc Rev 46(11):3322–3356

    Article  CAS  PubMed  Google Scholar 

  114. Doucet H, Hierso JC (2007) Palladium-based catalytic systems for the synthesis of conjugated enynes by Sonogashira reactions and related alkynylations. Angew Chem Int Ed 46(6):834–871

    Article  CAS  Google Scholar 

  115. Lu S, Liu Q, Han R et al (2021) Potential applications of porous organic polymers as adsorbent for the adsorption of volatile organic compounds. J Environ Sci 105:184–203

    Article  CAS  Google Scholar 

  116. Li X, Sun L, Sui H et al (2019) A novel polymeric adsorbent embedded with phase change materials (PCMs) microcapsules: Synthesis and application. Nanomaterials 9(5):736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful for funding from the National Natural Science Foundation of China (No. 52174058), the China Postdoctoral Science Foundation (No. 2022M721396), the Industry-University-Research Collaboration program supported by Science and Technology Department of Jiangsu Province (BY2022963), the Natural Science Foundation of Jiangsu Province (No. BK20220622), the Basic Science (Natural Science) Research Projects of Colleges and Universities in Jiangsu Province (No. 22KJB440001), the Science and Technology Program of Changzhou (No. CE20225065) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. SJCX22_1407).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaili Liao.

Ethics declarations

Conflict of Interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled, “Preparation of adsorption resin and its application in VOCs adsorption”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L., Zuo, J., Liao, K. et al. Preparation of adsorption resin and itas application in VOCs adsorption. J Polym Res 30, 167 (2023). https://doi.org/10.1007/s10965-023-03510-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03510-2

Keywords

Navigation