Skip to main content
Log in

Synthesis of poly(maleimide)s with promising performance via Diels–Alder reaction and ring-opening metathesis polymerization

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This work aims to generate maleimides to polymers via Diels–Alder reaction and ring-opening metathesis polymerization (ROMP). Maleimides were converted to adducts through Diels–Alder reactions by reacting with cyclopentadiene or furan, then these adducts were generated to the corresponding polymers via ring-opening metathesis polymerization. The chemical structures of adducts were confirmed by 1H NMR, FTIR and elemental analysis. After investigating the polymerization behaviors and properties, we found that the adducts could be converted into polymers via ROMP and affording polymers exhibited excellent performance. For example, the glass transition temperature of PBMC is 252 °C, 5% and 10% weight loss temperatures are successively 381 °C and 475 °C, and the relative dielectric constant (Dk) and dissipation (Df) at 1 Hz and 1 MHz are respectively 3.41 and 0.006, 3.35 and 0.020. Moreover, the adducts can be used to enhance other ROMP-derived polymers as the comonomers. We believe these may help researchers design and explore novel maleimides polymers and copolymers with promising properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bhattacharyya AS, Kumar S, Sharma A et al (2017) Metallization and APPJ treatment of bismaleimide. High Perform Polym 29:816–826. https://doi.org/10.1177/0954008316659123

    Article  CAS  Google Scholar 

  2. Chong W, Lin L (2017) N-phenyl maleimide grafted MWNT/bismaleimide-allyl bisphenol A nanocomposites: Improved MWNT dispersion, resin reactivity and composite mechanical strength. Mater Lett 194:38–41. https://doi.org/10.1016/j.matlet.2017.02.014

    Article  CAS  Google Scholar 

  3. Coope TS, Turkenburg DH, Fischer HR et al (2016) Novel Diels-Alder based self-healing epoxies for aerospace composites. Smart Mater Struct 25:084010. https://doi.org/10.1088/0964-1726/25/8/084010

    Article  CAS  Google Scholar 

  4. Yu L, Yu Y, Shi J et al (2022) Synthesis of a novel hyperbranched polyimide for reinforcing toughness and insulating properties of bismaleimide resin. Polymers 14:4234. https://doi.org/10.3390/polym14194234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ricarte RG, Tournilhac F, Leibler L (2019) Phase separation and self-assembly in vitrimers: hierarchical morphology of molten and semicrystalline polyethylene/dioxaborolane maleimide systems. Macromolecules 52:432–443. https://doi.org/10.1021/acs.macromol.8b02144

    Article  CAS  Google Scholar 

  6. Yang F, Pan L, Ma Z et al (2020) Highly elastic, strong, and reprocessable cross-linked polyolefin elastomers enabled by boronic ester bonds. Polym Chem 11:3285–3295. https://doi.org/10.1039/d0py00235f

    Article  CAS  Google Scholar 

  7. Belabbes A, Selva V, Foubelo F et al (2021) Synthesis of spiro{pyrrolidine-3,1 ’-pyrrolo 3,4-c pyrrole} basic framework by multicomponent 1,3-dipolar cycloaddition. Eur J Org Chem 2021:4229–4236. https://doi.org/10.1002/ejoc.202100646

    Article  CAS  Google Scholar 

  8. Hiltebrandt K, Pauloehrl T, Blinco JP et al (2015) lambda-Orthogonal pericyclic macromolecular photoligation. Angew Chem Int Edit 54:2838–2843. https://doi.org/10.1002/anie.201410789

    Article  CAS  Google Scholar 

  9. Lou L, Jiang L, Liu J et al (2007) Synthesis and characterization of optically active star-shaped poly (N-phenylmaleimide)s with a calixarene core. Polym Int 56:796–802. https://doi.org/10.1002/pi.2211

    Article  CAS  Google Scholar 

  10. Klein R, Uebel F, Frey H (2015) Maleimide glycidyl ether: a bifunctional monomer for orthogonal cationic and radical polymerizations. Macromol Rapid Commun 36:1822–1828. https://doi.org/10.1002/marc.201500400

    Article  CAS  PubMed  Google Scholar 

  11. Nakagawa S, Taguchi M, Kimura A (2011) LET and dose rate effect on radiation-induced copolymerization of maleimide with styrene in 2-propanol solution. Radiat Phys Chem 80:1199–1202. https://doi.org/10.1016/j.radphyschem.2011.05.012

    Article  CAS  Google Scholar 

  12. Yilmaz II, Arslan M, Sanyal A (2012) Design and synthesis of novel “Orthogonally” functionalizable maleimide-based styrenic copolymers. Macromol Rapid Commun 33:856–862. https://doi.org/10.1002/marc.201200036

    Article  CAS  PubMed  Google Scholar 

  13. Azechi M, Toyota N, Yamabuki K et al (2011) Anionic polymerization of N-substituted maleimide with achiral and chiral amines as an initiator. Polym Bull 67:631–640. https://doi.org/10.1007/s00289-010-0416-5

    Article  CAS  Google Scholar 

  14. Xiao SJ, Wieland M, Brunner S (2005) Surface reactions of 4-aminothiophenol with heterobifunctional crosslinkers bearin both succinimidl ester and maleimide for biomolecular immobilization. J Colloid Interface Sci 290:172–183. https://doi.org/10.1016/j.jcis.2005.04.014

    Article  CAS  PubMed  Google Scholar 

  15. Bindu RL, Nair CPR, Ninan KN (2000) Phenolic resins bearing maleimide groups: Synthesis and characterization. J Polym Sci Pol Chem 38:641–652. https://doi.org/10.1002/(sici)1099-0518(20000201)38:3%3c641::Aid-pola28%3e3.0.Co;2-z

    Article  CAS  Google Scholar 

  16. Bindu RL, Nair CPR, Ninan KN (2001) Phenolic resins with phenyl maleimide functions: Thermal characteristics and laminate composite properties. J Appl Polym Sci 80:1664–1674. https://doi.org/10.1002/app.1261

    Article  CAS  Google Scholar 

  17. Parker S, Reit R, Abitz H et al (2016) High-T-g Thiol-Click Thermoset Networks via the Thiol-Maleimide Michael Addition. Macromol Rapid Commun 37:1027–1032. https://doi.org/10.1002/marc.201600033

    Article  CAS  PubMed  Google Scholar 

  18. Gouri C, Nair CPR, Ramaswamy R et al (2002) Thermal decomposition characteristics of Alder-ene adduct of diallyl bisphenol A novolac with bismaleimide: effect of stoichiometry, novolac molar mass and bismaleimide structure. Eur Polym J 38:503–510. https://doi.org/10.1016/s0014-3057(01)00197-5

    Article  CAS  Google Scholar 

  19. Nishimori K, Tenjimbayashi M, Naito M et al (2020) Alternating copolymers of vinyl catechol or vinyl phenol with alkyl maleimide for adhesive and water-repellent coating materials. ACS Appl Polym Mater 2:4604–4612. https://doi.org/10.1021/acsapm.0c00682

    Article  CAS  Google Scholar 

  20. Chaisuwan T, Ishida H (2006) High-performance maleimide and nitrile-functionalized benzoxazines with good processibility for advanced composites applications. J Appl Polym Sci 101:548–558. https://doi.org/10.1002/app.23509

    Article  CAS  Google Scholar 

  21. Ishida H, Ohba S (2005) Synthesis and characterization of maleimide and norbornene functionalized benzoxazines. Polymer 46:5588–5595. https://doi.org/10.1016/j.polymer.2005.04.080

    Article  CAS  Google Scholar 

  22. Berto P, Mehats J, Wirotius A-L et al (2022) Reprocessable covalent elastomeric networks from functionalized 1,4-cis-polyisoprene and -polybutadiene. Macromolecules 55:4557–4567. https://doi.org/10.1021/acs.macromol.1c02156

    Article  CAS  Google Scholar 

  23. Berto P, Pointet A, Le Coz C et al (2018) Recyclable telechelic cross-linked polybutadiene based on reversible diels-alder chemistry. Macromolecules 51:651–659. https://doi.org/10.1021/acs.macromol.7b02220

    Article  CAS  Google Scholar 

  24. Dispinar T, Sanyal R, Sanyal A (2007) A Diels-Alder/Retro diels-alder strategy to synthesize polymers bearing maleimide side chains. J Polym Sci Pol Chem 45:4545–4551. https://doi.org/10.1002/pola.22299

    Article  CAS  Google Scholar 

  25. Oz Y, Sanyal A (2018) The Taming of the Maleimide: Fabrication of Maleimide-Containing “Clickable” polymeric materials. Chem Rec 18:570–586. https://doi.org/10.1002/tcr.201700060

    Article  CAS  PubMed  Google Scholar 

  26. Zhou W, Zhang H, Chen F (2018) Modified lignin: Preparation and use in reversible gel via Diels-Alder reaction. Int J Biol Macromol 107:790–795. https://doi.org/10.1016/j.ijbiomac.2017.09.052

    Article  CAS  PubMed  Google Scholar 

  27. Froidevaux V, Borne M, Laborbe E et al (2015) Study of the Diels-Alder and retro-Diels-Alder reaction between furan derivatives and maleimide for the creation of new materials. RSC Adv 5:37742–37754. https://doi.org/10.1039/c5ra01185j

    Article  CAS  Google Scholar 

  28. Gandini A (2005) The application of the Diels-Alder reaction to polymer syntheses based on furan/maleimide reversible couplings. Polímeros 15:95–101. https://doi.org/10.1590/s0104-14282005000200007

    Article  CAS  Google Scholar 

  29. Gandini A (2013) The furan/maleimide Diels-Alder reaction: A versatile click-unclick tool in macromolecular synthesis. Prog Polym Sci 38:1–29. https://doi.org/10.1016/j.progpolymsci.2012.04.002

    Article  CAS  Google Scholar 

  30. Yameen B, Rodriguez-Emmenegger C, Preuss CM et al (2013) A facile avenue to conductive polymer brushes via cyclopentadiene-maleimide Diels-Alder ligation. Chem Commun 49:8623–8625. https://doi.org/10.1039/c3cc44683b

    Article  CAS  Google Scholar 

  31. Zhou D, Huang H, Wang Y et al (2020) Design and synthesis of an amide-containing crosslinked network based on Diels-Alder chemistry for fully recyclable aramid fabric reinforced composites. Compos Sci Technol 197:108280. https://doi.org/10.1016/j.compscitech.2020.108280

    Article  CAS  Google Scholar 

  32. Cioc RC, Crockatt M, Waal JC et al (2022) The Interplay between Kinetics and Thermodynamics in Furan Diels-Alder Chemistry for Sustainable Chemicals Production. Angew Chem Int Edit 61:e202114720. https://doi.org/10.1002/anie.202114720

    Article  CAS  Google Scholar 

  33. Luo K-J, Huang L-B, Wang Y et al (2020) Tailoring the properties of Diels-Alder reaction crosslinked high-performance thermosets by different bismaleimides. Chin J Polym Sci 38:268–277. https://doi.org/10.1007/s10118-019-2328-7

    Article  CAS  Google Scholar 

  34. Hoveyda AH, Zhugralin AR (2007) The remarkable metal-catalysed olefin metathesis reaction. Nature 450:243–251. https://doi.org/10.1038/nature06351

    Article  CAS  PubMed  Google Scholar 

  35. Church DC, Takiguchi L, Pokorski JK (2020) Optimization of ring-opening metathesis polymerization (ROMP) under physiologically relevant conditions. Polym Chem 11:4492–4499. https://doi.org/10.1039/d0py00716a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yasir M, Liu P, Tennie IK et al (2019) Catalytic living ring-opening metathesis polymerization with Grubbs’ second- and third-generation catalysts. Nat Chem 11:488–494. https://doi.org/10.1038/s41557-019-0239-4

    Article  CAS  PubMed  Google Scholar 

  37. Blosch SE, Scannelli SJ, Alaboalirat M et al (2022) Complex polymer architectures using ring-opening metathesis polymerization: synthesis, applications, and practical considerations. Macromolecules 55:4200–4227. https://doi.org/10.1021/acs.macromol.2c00338

    Article  CAS  Google Scholar 

  38. Chen K, Han W, Hu X et al (2022) Microreactor-based chemo-enzymatic ROP-ROMP platform for continuous flow synthesis of bottlebrush polymers. Chem Eng J 437:135284. https://doi.org/10.1016/j.cej.2022.135284

    Article  CAS  Google Scholar 

  39. Naguib M, Nixon KL, Keddie DJ (2022) Effect of radical copolymerization of the (oxa)norbornene end-group of RAFT-prepared macromonomers on bottlebrush copolymer synthesis via ROMP. Polym Chem 13:1401–1410. https://doi.org/10.1039/d1py01599k

    Article  CAS  Google Scholar 

  40. Conrad RM, Grubbs RH (2009) Tunable, temperature-responsive polynorbornenes with side chains based on an elastin peptide sequence. Angew Chem Int Edit 48:8328–8330. https://doi.org/10.1002/anie.200903888

    Article  CAS  Google Scholar 

  41. Parry AL, Bomans PHH, Holder SJ et al (2008) Cryo electron tomography reveals confined complex morphologies of tripeptide-containing amphiphilic double-comb diblock copolymers. Angew Chem Int Edit 47:8859–8862. https://doi.org/10.1002/anie.200802834

    Article  CAS  Google Scholar 

  42. Alvaradejo GG, Nguyen HVT, Harvey P et al (2019) Polyoxazoline-based bottlebrush and brush-arm star polymers via ROMP: Syntheses and applications as organic radical contrast agents. ACS Macro Lett 8:473–478. https://doi.org/10.1021/acsmacrolett.9b00016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Golder MR, Nguyen HVT, Oldenhuis NJ et al (2018) Brush-first and ROMP-out with functional (macro)monomers: method development, structural investigations, and applications of an expanded brush-arm star polymer platform. Macromolecules 51:9861–9870. https://doi.org/10.1021/acs.macromol.8b01966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang T, Sui X, Gutekunst WR (2021) Convergent synthesis of branched metathesis polymers with enyne reagents. Macromolecules 54:8435–8442. https://doi.org/10.1021/acs.macromol.1c01051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hore S, Singh A, De S et al (2022) Polyarylquinone synthesis by relayed dehydrogenative 2+2+2 cCycloaddition. ACS Catal 12:6227–6237. https://doi.org/10.1021/acscatal.2c00175

    Article  CAS  Google Scholar 

  46. Zhang L, Huangfu F, Li W et al (2021) Rapid synthesis of diol homolog-based thermosets with tunable properties via ring-opening metathesis polymerization. Mater Adv 2:3671–3676. https://doi.org/10.1039/d1ma00210d

    Article  CAS  Google Scholar 

  47. Huangfu F, Li W, Yang Z et al (2022) Bulk ring-opening metathesis copolymerization of dicyclopentadiene and 5-ethylidene-2-norbornene: mixing rules, polymerization behaviors and properties. J Polym Res 29:420. https://doi.org/10.1007/s10965-022-03268-z

    Article  CAS  Google Scholar 

  48. Li W, Zhan Q, Yang P (2023) Facile approach for the synthesis of performance-advantaged degradable bio-based thermoset via ring-opening metathesis polymerization from epoxidized soybean oil. ACS Sustain Chem Eng 11:1200–1206. https://doi.org/10.1021/acssuschemeng.2c06787

    Article  CAS  Google Scholar 

  49. Peng W, Chen X, Wang J (2021) Study on the curing behavior of polythiol/phenolic/epoxy resin and the mechanical and thermal properties of the composites. Mater Res Express 8:055302. https://doi.org/10.1088/2053-1591/abeb4a

    Article  CAS  Google Scholar 

  50. Adjaoud A, Puchot L, Verge P (2022) High-Tg and degradable isosorbide-based polybenzoxazine vitrimer. ACS Sustain Chem Eng 10:594–602. https://doi.org/10.1021/acssuschemeng.1c07093

    Article  CAS  Google Scholar 

  51. Zhang S, Ran Q, Fu Q et al (2018) Preparation of transparent and flexible shape memory polybenzoxazine film through chemical structure manipulation and hydrogen bonding control. Macromolecules 51:6561–6570. https://doi.org/10.1021/acs.macromol.8b01671

    Article  CAS  Google Scholar 

  52. Zhang S, Li Q, Ye J et al (2022) Probing the copolymerization of alkynyl and cyano groups using monocyclic benzoxazine as model compound. Polymer 252:124932. https://doi.org/10.1016/j.polymer.2022.124932

    Article  CAS  Google Scholar 

  53. Yang J, He X, Wang H et al (2020) High-toughness, environment-friendly solid epoxy resins: Preparation, mechanical performance, curing behavior, and thermal properties. J Appl Polym Sci 137:48596. https://doi.org/10.1002/app.48596

    Article  CAS  Google Scholar 

  54. Yin R, Cheng H, Hong C et al (2017) Synthesis and characterization of novel phenolic resin/silicone hybrid aerogel composites with enhanced thermal, mechanical and ablative properties. Compos Part A Appl S 101:500–510. https://doi.org/10.1016/j.compositesa.2017.07.012

    Article  CAS  Google Scholar 

  55. Rao Y, Ogitani S, Kohl P et al (2002) Novel polymer-ceramic nanocomposite based on high dielectric constant epoxy formula for embedded capacitor application. J Appl Polym Sci 83:1084–1090. https://doi.org/10.1002/app.10082

    Article  CAS  Google Scholar 

  56. Hamerton I, Howlin BJ, Mitchell AL et al (2012) Systematic examination of thermal, mechanical and dielectrical properties of aromatic polybenzoxazines. React Funct Polym 72:736–744. https://doi.org/10.1016/j.reactfunctpolym.2012.07.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Guangdong SHENGYI Technology Limited Corporation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po Yang.

Ethics declarations

Ethical approval

This research does not include experiments involving human tissue and does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

The manuscript has not been published elsewhere and that it has not been submitted simultaneously for publication elsewhere.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9423 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Zhan, Q. & Yang, P. Synthesis of poly(maleimide)s with promising performance via Diels–Alder reaction and ring-opening metathesis polymerization. J Polym Res 30, 127 (2023). https://doi.org/10.1007/s10965-023-03503-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03503-1

Keywords

Navigation