Skip to main content
Log in

Mullins effect in polymer large deformation strain gauges

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The possibility of making strain gauges with high sensitivity to changes in mechanical stress based on hard elastic films of isotactic polypropylene, with thixotropic polymer softening during cyclic deformation (Patrikeev-Mullins effect) and the “dry crazing” effect, is studied. Three options of rigid elastic film preparation using isotactic polypropylene for successive deposition of an adhesive layer of a solution of macromolecular compounds and an electrically conductive layer of a graphite dispersion are proposed. The optimal order of operations for manufacturing electrical sensors with high sensitivity to changes in mechanical stress has been established, including preliminary cyclic deformation in the air to form open micropores as a result of “dry crazing”. A mathematical model has been developed, which predicts the mechanical stress and/or the change in mechanical stress of film strain gauges based on the change in the electrical resistance of the conductive layer in the 6–35% strain range with up to 700 relative strain sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cannon SL, McKenna GB, Statton WO (1976) J Polym Sci 11:209

    CAS  Google Scholar 

  2. Ren W (1992) Colloid Polym Sci 270:943

    Article  CAS  Google Scholar 

  3. Garcia-Leiner M, Song J, Lesser AJ (2003) J Polym Sci 41(12):1375

    Article  CAS  Google Scholar 

  4. Park IK, Noether HD (1975) Colloid Polym Sci 253:824

    Article  CAS  Google Scholar 

  5. Flynn C, Taberner A, Nielsen P (2011) Biomech Model Mechanobiol 10:27

    Article  Google Scholar 

  6. Zhang L, Li H, Lai X, Gao T, Yang J, Zeng X, Appl ACS (2018) Mater Interfaces 10:41784–41792

    Article  CAS  Google Scholar 

  7. Ding G, Jiao W, Wang R, Chu Z, Huang Y (2019) J Mater Chem A 19:712333–12342

  8. Liu Y, Pharr M, Salvatore GA (2017) ACS Nano 10:9614

    Article  Google Scholar 

  9. Hu Z, Xin Y, Fu Q (2021) J Polym Res 28:134

    Article  CAS  Google Scholar 

  10. Yang H, Kim D, Abhishek KS et al (2011) MRS Online Proc Libr 1312:407

    Article  Google Scholar 

  11. Wu J, Li H, Lai X, Chen Z, Zeng X (2020) Mater Lett 280:128591

    Article  CAS  Google Scholar 

  12. Hu Y, Zhao T, Zhu P et al (2018) Nano Res 11:1938–1955

    Article  Google Scholar 

  13. Wu Z, Yang F, Yang J, Yang P, Zhang X, Zhang T, Lu M (2022) Macromol Mater Eng 307:2100502

    Article  CAS  Google Scholar 

  14. Lee K, Ju B (2012) Appl Mater Sci 5(209):2082–2086

    Google Scholar 

  15. Palza H, Reznik B, Wilhelm M, Arias O (2012) Electrical. Macromol Mater Eng 297:474–480

    Article  CAS  Google Scholar 

  16. Zhou C, Zhang Y, Hu C, Meng Y, Yu D (2022) J Polym Res 7:29

    Google Scholar 

  17. Sokolov AK, Garishin OK, Svistkov AL (2018) Mech Adv Mater Mod Process 4:7

    Article  Google Scholar 

  18. Garishin OK, Shadrin VV, Kornev YuV (2019) Mater Phys Mech 42:445–454

    CAS  Google Scholar 

  19. Diani J, Fayolle B, Gilormini P (2009) Eur Polymer J 45:601

    Article  CAS  Google Scholar 

  20. Lin Y, Li X, Chen X, An M, Zhang Q, Wang D, Chen W, Sun L, Yin P, Meng L, Li L (2019) Polymer 184:121930

    Article  CAS  Google Scholar 

  21. Marchenko ES, Yasenchuk YF, Bajgonakova GA, Gunter SV, Shishelova AA (2020) Russ Phys J 63:1243

    Article  Google Scholar 

  22. Yasenchuk Y, Marchenko E, Baigonakova G, Gunther S, Kokorev O, Gunter V, Chekalkin T, Topolnitskiy E, Obrosov A, Kang J (2021) Biomed Mater 16:021001

    Article  CAS  Google Scholar 

  23. Monogenov AN, Gunther VE, Anikeev SG, Marchenko ES, Khodorenko VN, Fatyushin MY (2020) Russ Metall 10:1116

    Article  Google Scholar 

  24. Luo RK, Wu X, Mortel WJ (2014) Mullins effect modelling and experiment for anti-vibration systems. Polym Test 40:304–312

    Article  CAS  Google Scholar 

  25. Yasenchuk YF, Marchenko ES, Gunter SV, Baigonakova GA, Kokorev OV, Volinsky AA, Topolnitsky EB (2021) Materials 14:6256

    Article  CAS  Google Scholar 

  26. Luo RK, Peng L, Wu X, Mortel WJ (2014) Polym Testing 40:304–312

    Article  CAS  Google Scholar 

  27. Kondratov AP, Cherkasov EP, Nagornova IV (2019) AIP Conf Proc 2141:050006

    Article  Google Scholar 

  28. Hu J, Zhu Y, Huang H, Lu J (2012) Prog Polymer Sci 37:1720

    Article  CAS  Google Scholar 

  29. Kondratov AP, Volinsky AA, Chen J (2018) Polymer Technol 37:668

    Article  CAS  Google Scholar 

  30. Jiang ZC, Xiao Y, Kang Y, Pan M, Li B-J, Zhang S, Appl ACS (2017) Mater Interfaces 9(24):20276

    Article  CAS  Google Scholar 

  31. Kondratov AP, Volinsky AA, Chen J (2016) J Appl Polym Sci 133:43691

    Article  Google Scholar 

  32. Zare MT, Prabhakaran MP, Parvin N, Ramakrishna S (2019) Chem Eng J 374:706

    Article  CAS  Google Scholar 

  33. Rubinstein M, Panyukov S (2002) Macromolecules 35:6670–6686

    Article  CAS  Google Scholar 

  34. Estevez R, Tijssens MGA, Giessen E (2000) J Mech Phys Solids 48:2585–2617

    Article  CAS  Google Scholar 

  35. Rakkapao N, Vao-Soongnern V (2014) J Polym Res 21:12

    Article  Google Scholar 

  36. Gao C, Lu H, Ni H, Chen J (2018) J Polym Res 25(1):6

    Article  Google Scholar 

  37. Juan L (2017) J Nanomater 5:2171356

    Google Scholar 

Download references

Funding

There was no funding received to conduct the reported research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex A. Volinsky.

Ethics declarations

Competing interests

The authors declare no competing interests or conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratov, A.P., Lozitskaya, A.V., Samokhin, V.N. et al. Mullins effect in polymer large deformation strain gauges. J Polym Res 30, 36 (2023). https://doi.org/10.1007/s10965-022-03372-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03372-0

Keywords

Navigation