Skip to main content
Log in

Thermal and photo oxidative degradation of natural rubber film in the presence of iron (III) stearate

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The use of pro-degradant additive (PDA) to enhance the oxidative degradability of polymers has been successful in hydrocarbon plastics, but few, if any studies have been conducted to evaluate the effect of PDA on natural rubbers. This study investigated thermal, and photo oxidative degradation of natural rubber facilitated by iron (III) stearate as PDA. For a total of eight weeks, natural rubber compounded with PDA was subjected to thermal and photo oxidation separately. Spectroscopic analysis was used to quantify changes in the chemical structure of the rubber, including the formation of carbonyl, hydroxyl, and ether linkages. The changes in the surface hydrophilicity, crystallinity, and thermal properties of the rubber throughout the degradation process were evaluated as well. PDA-containing natural rubber film exhibited greater oxidative degradation, as evidenced by a significant increase in carbonyl index, a decrease in water contact angle, and a lower decomposition temperature. Between the two modes of degradation, natural rubber was found to degrade better in the presence of light. The apparent improvement in the oxidative degradability of the rubber following the incorporation of the iron salt suggests that the material could be formulated or developed as oxo-biodegradable rubber to promote more sustainable consumption. Oxidative degradation is a crucial process that converts rubber into shorter chains with a higher concentration of oxygen-carrying functional groups, and these changes are required to support the subsequent biodegradation process, resulting in a more environmentally friendly material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Men X, Wang F, Chen G-Q, Zhang H-B, Xian M (2018) Biosynthesis of natural rubber: Current state and Perspectives. Int J Mol Sci 20(1):50

    Article  PubMed Central  Google Scholar 

  2. Gong D, Tang F, Xu Y, Hu Z, Luo W (2021) Cobalt catalysed controlled copolymerization: An efficient approach to bifunctional polyisoprene with Enhanced Properties. Polym Chem 12(11):1653–1660

    Article  CAS  Google Scholar 

  3. Fazli A, Rodrigue D (2020) Waste rubber recycling: A review on the evolution and properties of thermoplastic elastomers. Materials 13(3):782

    Article  CAS  PubMed Central  Google Scholar 

  4. Soares FA, Steinbüchel A (2022) Natural rubber degradation products: Fine chemicals and reuse of rubber waste. Eur Polym J 165:111001

    Article  CAS  Google Scholar 

  5. Ansari AH, Jakarni FM, Muniandy R, Hassim S, Elahi Z (2021) Natural rubber as a renewable and sustainable bio-modifier for pavement applications: A Review. J Clean Prod 289:125727

    Article  CAS  Google Scholar 

  6. Kurian T, Mathew NM (2011) Natural rubber: Production, properties and applications. Biopolymers: Biomedical and Environmental Applications. 403–436. https://doi.org/10.1002/9781118164792.ch14

  7. Ali MF, Akber MA, Smith C, Aziz AA (2021) The dynamics of rubber production in malaysia: Potential IMPACTS, challenges and proposed interventions. Forest Policy Econ 127:102449

    Article  Google Scholar 

  8. Ikram A (2003) Environmental Degradation of NR Latex Gloves in a Composting Environment. J Rubber Res 6(2):73–83

    CAS  Google Scholar 

  9. Xie Y, Hassan AA, Song P, Zhang Z, Wang S (2019) High scission of butadiene rubber vulcanizate under thermo-oxidation. Polym Degrad Stab 167:292–301

    Article  CAS  Google Scholar 

  10. Czajczyńska D, Anguilano L, Ghazal H, Krzyżyńska R, Reynolds AJ, Spencer N, Jouhara H (2017) Potential of pyrolysis processes in the waste management sector. Therm Sci Eng Prog 3:171–197

    Article  Google Scholar 

  11. Januszewicz K, Kazimierski P, Suchocki T, Kardaś D, Lewandowski W, Klugmann-Radziemska E, Łuczak J (2020) Waste rubber pyrolysis: Product yields and limonene concentration. Materials 13(19):4435

    Article  CAS  PubMed Central  Google Scholar 

  12. Akbas A, Yuhana NY (2021) Recycling of rubber wastes as fuel and its additives. Recycling 6(4):78

    Article  Google Scholar 

  13. Wiśniewska P, Wang S, Formela K (2022) Waste tire rubber devulcanization technologies: State-of-the-art, limitations and future perspectives. Waste Manage 150:174–184

    Article  Google Scholar 

  14. Chittella H, Yoon LW, Ramarad S, Lai Z-W (2021) Rubber Waste Management: A review on methods, mechanism, and prospects. Polym Degrad Stab 194:109761

    Article  CAS  Google Scholar 

  15. Abrusci C, Pablos JL, Marín I, Espí E, Corrales T, Catalina F (2013) Comparative effect of metal stearates as pro-oxidant additives on bacterial biodegradation of thermal- and photo-degraded low density polyethylene mulching films. Int Biodeterior Biodegradation 83:25–32

    Article  CAS  Google Scholar 

  16. Sable S, Ahuja S, Bhunia H (2020) Preparation and characterization of oxo-degradable polypropylene composites containing a modified pro-oxidant. J Polym Environ 29(3):721–733

    Article  Google Scholar 

  17. Billingham NC, Bonora M, Corte DD (2003) Environmentally degradable plastics based on oxo-biodegradation of conventional polyolefins. In Biodegradable Polym Plastics (pp. 313–325). Springer, Boston, MA

  18. Manaila E, Stelescu M, Craciun G (2018) Degradation studies realized on natural rubber and plasticized potato starch based eco-composites obtained by peroxide cross-linking. Int J Mol Sci 19(10):2862

    Article  PubMed Central  Google Scholar 

  19. Kusworo TD, Susanto H, Aryanti N, Rokhati N, Widiasa IN, Al-Aziz H, Utomo DP, Masithoh D, Kumoro AC (2021) Preparation and characterization of photocatalytic PSF-TiO2/go nanohybrid membrane for the degradation of organic contaminants in natural rubber wastewater. J Environ Chem Eng 9(2):105066

    Article  CAS  Google Scholar 

  20. Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, Jang JH, Abu-Omar M, Scott SL, Suh S (2020) Degradation rates of plastics in the environment. ACS Sustain Chem Eng 8(9):3494–3511

    Article  CAS  Google Scholar 

  21. Bosco F, Mollea C (2021) Biodegradation of Natural Rubber: Microcosm study. Wat Air Soil Poll 232(6):1–15

  22. Ghatge S, Yang Y, Ahn J-H, Hur HG (2020) Biodegradation of polyethylene: A brief review. Appl Biol Chem 63(1):1–14

  23. Antunes MC, Agnelli JAM, Babetto AS, Bonse BC, Bettini SHP (2018) Correlating different techniques in the thermooxidative degradation monitoring of high-density polyethylene containing pro-degradant and antioxidants. Polym Test 69:182–187

    Article  CAS  Google Scholar 

  24. Sable S, Ahuja S, Bhunia H (2020) Studies on biodegradability of cobalt stearate filled polypropylene after abiotic treatment. J Polym Environ 28(8):2236–2252

    Article  CAS  Google Scholar 

  25. Yikmis M, Steinbüchel A (2012) Historical and recent achievements in the field of microbial degradation of natural and synthetic rubber. Appl Environ Microbiol 78(13):4543–4551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martínez-Romo A, González-Mota R, Soto-Bernal JJ, Rosales-Candelas I (2015) Investigating the degradability of HDPE, LDPE, PE-Bio, and pe-oxo films under UV-B radiation. J Spectrosc 2015

  27. Almond J, Sugumaar P, Wenzel MN, Hill G, Wallis C (2020) Determination of the carbonyl index of polyethylene and polypropylene using specified area under band methodology with ATR-FTIR spectroscopy. E-Polymers 20(1):369–381

    Article  CAS  Google Scholar 

  28. Vazquez YV, Ressia JA, Cerrada ML, Barbosa SE, Vallés EM (2019) Prodegradant additives effect onto Comercial polyolefins. J Polym Environ 27(3):464–471

    Article  CAS  Google Scholar 

  29. Smith BC (2016) IR Spectral Interpretation Workshop. The Infrared Spectroscopy of Alkenes. Spectroscopy 31:11–28

  30. Chen D, Shao H, Yao W, Huang B (2013) Fourier transform infrared spectral analysis of polyisoprene of a different microstructure. Int J Polym Sci 2013:1–5

    Article  Google Scholar 

  31. Hassan SB, Oghenevweta JE, Aigbodion VS (2012) Morphological and mechanical properties of carbonized waste maize stalk as reinforcement for Eco-composites. Compos B Eng 43(5):2230–2236

    Article  CAS  Google Scholar 

  32. Kim DY, Park JW, Lee DY, Seo KH (2020) Correlation between the crosslink characteristics and mechanical properties of natural rubber compound via accelerators and reinforcement. Polymers 12(9):2020

    Article  CAS  PubMed Central  Google Scholar 

  33. Chigondo F, Shoko P, Nyamunda BC, Moyo M (2013) Maize Stalk as Reinforcement in Natural Rubber Composites 2:263–271

  34. Grause G, Chien M-F, Inoue C (2020) Changes during the weathering of polyolefins. Polym Degrad Stab 181:109364

    Article  CAS  Google Scholar 

  35. Rooshenass P, Yahya R, Gan SN (2017) Preparation of liquid epoxidized natural rubber by oxidative degradations using periodic acid, potassium permanganate and UV-irradiation. J Polym Environ 26(4):1378–1392

    Article  Google Scholar 

  36. Gewert B, Plassmann MM, MacLeod M (2015) Pathways for degradation of plastic polymers floating in the marine environment. Environ Sci Process Impacts 17(9):1513–1521

    Article  CAS  PubMed  Google Scholar 

  37. Erdmann M, Kleinbub S, Wachtendorf V, Schutter JD, Niebergall U, Böhning M, Koerdt A (2020) Photo-oxidation of PE-HD affecting polymer/fuel interaction and bacterial attachment. Npj Mater Degrad 4(1):1–10

  38. Nikafshar S, Zabihi O, Ahmadi M, Mirmohseni A, Taseidifar M, Naebe M (2017) The effects of UV light on the chemical and mechanical properties of a transparent epoxy-diamine system in the presence of an organic UV absorber. Materials 10(2):180

    Article  PubMed Central  Google Scholar 

  39. Gijsman P (2008) Review on the thermo-oxidative degradation of polymers during processing and in service. e-Polymers 8(1):065

  40. De Beer JA, Focke WW (2019) Oxidative degradation of polyolefins in the presence of Cupric and ferric stearate additives. Macromol Symp 384(1):1800149

    Article  Google Scholar 

  41. Rajakumar K, Sarasvathy V, Chelvan AT, Chitra R, Vijayakumar CT (2011) Effect of iron carboxylates on the photodegradability of polypropylene. II. Artificial Weathering Studies. J Appl Polym Sci 123(5):2968–2976

    Article  Google Scholar 

  42. Oelgemöller M, Hoffmann N (2016) Studies in organic and physical photochemistry – an interdisciplinary approach. Org Biomol Chem 14(31):7392–7442

    Article  PubMed  Google Scholar 

  43. Vogel P, Houk KN, Grubbs RH (2019) Organic Chemistry: Theory, reactivity and mechanisms in modern synthesis. Wiley-VCH

    Google Scholar 

  44. Bhandari NL, Bhandari G, Bista S, Pokhrel B, Bist K, Dhakal KN (2021) Degradation of fundamental polymers/plastics used in daily life: A Review. BIBECHANA 18(1):240–253

    Article  Google Scholar 

  45. Tsui E, Wang H, Knowles RR (2020) Catalytic generation of alkoxy radicals from unfunctionalized alcohols. Chem Sci 11(41):11124–11141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Balakrishnan P, Geethamma VG, Gopi S, Thomas MG, Kunaver M, Huskić M, Kalarikkal N, Volova T, Rouxel D, Thomas S (2019) Thermal, biodegradation and theoretical perspectives on nanoscale confinement in starch/cellulose nanocomposite modified via Green Crosslinker. Int J Biol Macromol 134:781–790

    Article  CAS  PubMed  Google Scholar 

  47. de Oliveira Gama R, Bretas RE, Oréfice RL (2016) Control of the hydrophilic/hydrophobic behavior of biodegradable natural polymers by decorating surfaces with nano- and micro-components. Adv Polym Technol 37(3):654–661

    Article  Google Scholar 

  48. Meereboer KW, Misra M, Mohanty AK (2020) Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem 22(17):5519–5558

    Article  CAS  Google Scholar 

  49. Gazvoda L, Višić B, Spreitzer M, Vukomanović M (2021) Hydrophilicity affecting the enzyme-driven degradation of piezoelectric poly-L-lactic films. Polymers 13(11):1719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li Y, Wang X, Wang Y, Sun Y, Xia S, Zhao J (2022) Effect of biofilm colonization on pb (II) adsorption onto poly(butylene succinate) microplastic during its biodegradation. Sci Total Environ 833:155251

  51. Pantani R, Sorrentino A (2013) Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions. Polym Degrad Stab 98(5):1089–1096

    Article  CAS  Google Scholar 

  52. Mohanan N, Montazer Z, Sharma PK, Levin DB (2020) Microbial and enzymatic degradation of synthetic plastics. Front Microbiol 11:580709

  53. Jenkins MJ, Harrison KL (2008) The effect of crystalline morphology on the degradation of polycaprolactone in a solution of phosphate buffer and lipase. Polym Adv Technol 19(12):1901–1906

    Article  CAS  Google Scholar 

  54. Laurier KG, Vermoortele F, Ameloot R, De Vos DE, Hofkens J, Roeffaers MB (2013) Iron (III)-based metal–organic frameworks as visible light photocatalysts. J Am Chem Soc 135(39):14488–14491

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project is funded by University of Malaya Faculty Research Grant GPF085-2020.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Natasya Nabilla Hairon Azhar. The first draft of the manuscript was written by Natasya Nabilla Hairon Azhar and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Supervision: Desmond Teck-Chye Ang and Acga Cheng.

Corresponding author

Correspondence to Desmond Teck Chye Ang.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 68 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azhar, N.N.H., Cheng, A., Lee, S.Y. et al. Thermal and photo oxidative degradation of natural rubber film in the presence of iron (III) stearate. J Polym Res 29, 476 (2022). https://doi.org/10.1007/s10965-022-03316-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03316-8

Keywords

Navigation