Skip to main content

Advertisement

Log in

Facile synthesis of highly flexible sodium ion conducting polyvinyl alcohol (PVA)-polyethylene glycol (PEG) blend incorporating reduced graphene-oxide (rGO) composites for electrochemical devices application

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Blend polymer composite electrolyte (BPCE) films consisting of Polyvinyl alcohol (PVA)-Polyethylene glycol (PEG) with Sodium nitrate (NaNO3) and different weight percent of reduced graphene-oxide (rGO) were prepared by standard solution cast technique. The structural properties were analysed by the X-ray diffraction of the nanocomposite shows the uniform distribution of rGO in the polymer matrix and confirms the amorphous nature of the polymer blend composite films. FTIR studies clearly shows the confirmation of strong interaction between polymer, rGO (nanofillers) and Na-ion. The chemical bond formation spectrum or structure is analyzed by Raman spectroscopy to understand the chemical variation of the polymer composite, which confirm the presence of rGO in the composites. Thermal analysis DSC / TGA results show that the amount of rGO in the blend polymer matrix has a significantly improved the thermal stability of blend polymer composite films. The surface morphology of the as prepared films was analysed by field emission scanning electron microscope. The electrical properties of as prepared films show the highest ionic conductivity σ \(\sim\)10–6 S cm−1 in 30 wt.% based BPCE films (at 323 K). The dielectric properties of blend polymer composites films were measured over a wide frequency range of 10–1 to 107 Hz at two different temperatures, which illustrates the increment in a.c conductivity and dielectric permittivity of blend polymer composite films by adding the rGO contents. The performance of the electrochemical stability window was found up to (\(\sim\)4.15 V vs.Na+/Na) and ionic transference numbers found \(\sim\)0.91 at room temperature. Ion transport mechanism is the key parameter and reveals better ion transportation in electrolytes during electrochemical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Nunes-Pereira J, Costa CM, Lanceros-Méndez S (2015) Polymer composites and blends for battery separators: state of the art challenges and future trends. J Power Sources 281:378–398

    Article  CAS  Google Scholar 

  2. Arya A, Sharma AL (2018) Optimization of salt concentration and explanation of two peak percolation in blend solid polymer nanocomposite films. J Solid State Electrochem 9:2725–2745

    Article  Google Scholar 

  3. Wang Y, Zanelotti CJ, Wang X, Kerr R, Jin L, Kan WH, Dingemans TJ, Forsyth M, Madsen LA (2021) Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium-ion pathways. Nat Mater 3:1–9

    Google Scholar 

  4. Chen L, Venkatram S, Kim C, Batra R, Chandrasekaran A, Ramprasad R (2019) Electrochemical stability window of polymeric electrolytes. Chem Mater 12:4598–4604

    Article  Google Scholar 

  5. Arya A, Sharma AL (2017) Insights into the use of polyethylene oxide in energy storage/conversion devices: a critical review. J Phys D Appl Phys 50:443002

  6. Ma Z, Gao J, Huai Y, Guo J, Deng Z, Suo J (2008) Preparation and characterization of inorganic–organic hybrid proton exchange membranes based on phosphorylated PVA and PEG-grafted silica particles. J Solgel Sci Technol 48:267–271

    Article  CAS  Google Scholar 

  7. Yassin AY (2020) Dielectric spectroscopy characterization of relaxation in composite based on (PVA–PVP) blend for nickel–cadmium batteries. J Mater Sci Mater Electron 31:19447–19463

    Article  Google Scholar 

  8. Lobo B, Veena L (2021) Experimental investigations on nano-titania incorporated polyvinyl alcohol-polyvinyl pyrrolidone composite films. Polym Plast Technol Mater 16:1–21

    Google Scholar 

  9. Suleman M, Othman MA, Hashmi SA, Kumar Y, Deraman M, Omar R, Jasni MR (2017) Activated graphene oxide/reduced graphene oxide electrodes and low viscous sulfonium cation based ionic liquid incorporated flexible gel polymer electrolyte for high rate supercapacitors. J Alloys Compd 25:3376–3392

    Article  Google Scholar 

  10. Raj TV, Hoskeri PA, Muralidhara HB, Manjunatha CR, Kumar KY, Raghu MS (2020) Facile synthesis of perovskite lanthanum aluminate and its green reduced graphene oxide composite for high performance supercapacitors. J Electroanal Chem 858:113830

  11. Aarya S, Kumar Y, Chahota RK (2020) Recent advances in materials, parameters, performance and technology in ammonia sensors: a review. J Inorg Organomet Polym Mater 30:269–290

    Article  CAS  Google Scholar 

  12. Menisha M, Senavirathna SL, Vignarooban K, Iqbal N, Pitawala HM, Kannan AM (2021) Synthesis electrochemical and optical studies of poly (ethylene oxide) based gel-polymer electrolytes for sodium-ion secondary batteries. Solid State Ion 371:115755

  13. Shao L, Li J, Guang Y, Zhang Y, Zhang H, Che X, Wang Y (2016) PVA/polyethyleneimine-functionalized graphene composites with optimized properties. Mater Des 99:235–242

    Article  CAS  Google Scholar 

  14. Zhang L, Qi H, Zhao Y, Zhong L, Zhang Y, Wang Y, Xue J, Li Y (2019) Au nanoparticle modified three-dimensional network PVA/RGO/TiO2 composite for enhancing visible light photocatalytic performance. Appl Surf Sci 498:143855

  15. Chayambuka K, Mulder G, Danilov DL, Notten PH (2018) Sodium-ion battery materials and electrochemical properties reviewed. Adv Energy Mater 8:1800079

    Article  Google Scholar 

  16. Amiri H, Mohsennia M (2017) Impedance study of PVA/PEG/LiClO 4/TiO 2 nanocomposite solid polymer blend electrolyte. J Mater Sci Mater Electron 28:4586–4592

    Article  CAS  Google Scholar 

  17. Panwar V, Pal K (2018) Dynamic performance of an amorphous polymer composite under controlled loading of reduced graphene oxide based on entanglement of filler with polymer chains. J Polym Res 25:53

    Article  Google Scholar 

  18. Zhang W, Zhang F, Ming F, Alshareef HN (2019) Sodium-ion battery anodes: Status and future trends. Energy Chem 1:100012

  19. Gao H, Zhou W, Park K, Goodenough JB (2016) A sodium-ion battery with a low-cost cross-linked gel-polymer electrolyte. Adv Energy Mater 6:1600467

    Article  Google Scholar 

  20. Arya A, Sharma AL (2020) A glimpse on all-solid-state Li-ion battery (ASSLIB) performance based on novel solid polymer electrolytes: a topical review. J Mater Sci 55:6242–6304

    Article  CAS  Google Scholar 

  21. Zheng M, Ji Q, Ullah Z, Zhang Y, Chen M, Li W, Li Q, Liu L (2021) High protection performance based on corrosion media-consumption and barrier properties of the supramolecular polymer reinforced graphene oxide composite coatings. J Polym Res 28:426

    Article  CAS  Google Scholar 

  22. El Nemr A, Serag E, El-Maghraby A, Fathy SA, Abdel Hamid FF (2019) Manufacturing of pH sensitive PVA/PVP/MWCNT and PVA/PEG/MWCNT nanocomposites: an approach for significant drug release. J Macromol Sci A 56:781–793

    Article  Google Scholar 

  23. El Sayed AM, Diab HM, El-Mallawany R (2013) Controlling the dielectric and optical properties of PVA/PEG polymer blend via e-beam irradiation. J Polym Res 20:1–10

    Article  Google Scholar 

  24. Agool IR, Kadhim KJ, Hashim A (2017) Synthesis of (PVA–PEG–PVP–ZrO 2) nanocomposites for energy release and gamma shielding applications. Int J Plast Technol 21:444–453

    Article  CAS  Google Scholar 

  25. Prajapati GK, Gupta PN (2011) Comparative study of the electrical and dielectric properties of PVA–PEG–Al2O3–MI (M= Na K Ag) complex polymer electrolytes. Physi B Condens Matter 406:3108–3113

    Article  CAS  Google Scholar 

  26. Mohanta J, Kang DW, Cho JS, Jeong SM, Kim JK (2020) Stretchable electrolytes for stretchable/flexible energy storage systems–Recent developments. Energy Storage Mater 28:315–324

    Article  Google Scholar 

  27. Essabir H, Raji M, Rodrigue D, Bouhfid R (2021) Multifunctional Poly (Vinylidene Fluoride) and Styrene Butadiene Rubber Blend Magneto-responsive Nanocomposites Based on Hybrid Graphene Oxide and Fe3O4: Synthesis Preparation and Characterization. J Polym Res 28:437

    Article  CAS  Google Scholar 

  28. Krishnakumar V, Shanmugam G (2012) Electrical and optical properties of pure and Pb 2+ ion doped PVA− PEG polymer composite electrolyte films. Ionics 18:403–411

    Article  CAS  Google Scholar 

  29. Fard HN, Pour GB, Sarvi MN, Esmaili P (2019) PVA-based supercapacitors. Ionics 25:2951–2963

    Article  CAS  Google Scholar 

  30. Noorinezhad E, Merati AA, Moazeni N (2021) Enhancement of chromic-piezoelectric sensitivity responses of polyvinylidene fluoride/polydiacetylene nanofibers using graphene oxide. J Polym Res 28:456

    Article  CAS  Google Scholar 

  31. Aziz SB, Hadi JM, Dannoun E, Abdulwahid RT, Saeed RS, Shahab Marf A, Karim WO, Kadir MF (2020) The study of plasticized amorphous biopolymer blend electrolytes based on polyvinyl alcohol (PVA): Chitosan with high ion conductivity for energy storage electrical double-layer capacitors (EDLC) device application. Polymers 12:1938

    Article  CAS  PubMed Central  Google Scholar 

  32. Wang X, Su M, Liu C, Shen C, Liu X (2020) Poly (vinyl alcohol)/graphene nanocomposite hydrogel scaffolds for control of cell adhesion. J Renew Mater 8:89

    Article  Google Scholar 

  33. Takara EA, Pereira SV, Scala-Benuzzi ML, Fernández-Baldo MA, Raba J, Messina GA (2019) Novel electrochemical sensing platform based on a nanocomposite of PVA/PVP/RGO applied to IgG anti-Toxoplasma gondii antibodies quantitation. Talanta 195:699–705

    Article  CAS  PubMed  Google Scholar 

  34. Khan S, Khan ZM, Husain M, Zulfequar M (2020) Facile synthesis of highly conducting polypyrrole and reduced graphene oxide nanocomposites for low-turn-on electron field emitters. J Phys Chem Solids 143:109522

  35. Mohammed G, El Sayed AM (2019) Structural, morphological, optical and dielectric properties of M3+/PVA/PEG SPE Films (M= La Y Fe or Ir). Polym Adv Technol 30:698–712

    Article  CAS  Google Scholar 

  36. Jiang L, Shen XP, Wu JL, Shen KC (2010) Preparation and characterization of graphene/poly (vinyl alcohol) nanocomposites. J Appl Polym Sci 118:275–279

    Article  CAS  Google Scholar 

  37. Sadiq M, Raza MM, Chaurasia SK, Zulfequar M, Ali J (2021) Studies on flexible and highly stretchable sodium ion conducting blend polymer electrolytes with enhanced structural, thermal, optical, and electrochemical properties. J Mater Sci Mater Electron 32:19390–19411

    Article  CAS  Google Scholar 

  38. Ghosh TN, Bhunia AK, Pradhan SS, Sarkar SK (2021) Electric modulus approach to the analysis of electric relaxation and magnetodielectric effect in reduced graphene oxide–poly (vinyl alcohol) nanocomposite. J Mater Sci Mater Electron 31:15919–15930

    Article  Google Scholar 

  39. Sadiq M, Moeen Hasan Raza M, Zulfequar M, Ali J (2021) Investigations on Structural Optical Properties Electrical Properties and Electrochemical Stability Window of the Reduced Graphene Oxides Incorporated Blend Polymer Nanocomposite Films. J Nanosci Nanotechnol 21(6):3203–3217

    Article  CAS  PubMed  Google Scholar 

  40. Sadiq M, Raza MM, Murtaza T, Zulfequar M, Ali J (2021) Sodium Ion-Conducting Polyvinylpyrrolidone (PVP)/Polyvinyl Alcohol (PVA) Blend Electrolyte Films. J Electron Mater 50:403–418

    Article  CAS  Google Scholar 

  41. Nangia R, Shukla NK, Sharma A (2018) Frequency and temperature-dependent impedance spectroscopy of PVA/PEG polymer blend film. High Perform Polym 30:918–926

    Article  CAS  Google Scholar 

  42. Ravindran D, Vickraman P (2012) XRD, Conductivity studies on PVA-PEG blend based Mg2+ ion conducting polymer electrolytes. Int J Sci Eng Appl 1:72–74

    Google Scholar 

  43. Abraham JE, Das AK, Pandey M, Balachandran M (2020) Synthesis of emeraldine PANI polymer-reduced graphene and its use as polyelectrolyte. Polym Bull 77:4023–4041

    Article  CAS  Google Scholar 

  44. Sengwa RJ, Choudhary S (2014) Structural characterization of hydrophilic polymer blends/montmorillonite clay nanocomposites. J Appl Polym Sci 131:1–16

    Article  Google Scholar 

  45. Cao J, Chen C, Chen K, Lu Q, Wang Q, Zhou P, Liu D, Song L, Niu Z, Chen J (2017) High-strength graphene composite films by molecular level couplings for flexible supercapacitors with high volumetric capacitance. J Mater Chem A 5:15008–15016

    Article  CAS  Google Scholar 

  46. Lim MY, Shin H, Shin DM, Lee SS, Lee JC (2016) Poly (vinyl alcohol) nanocomposites containing reduced graphene oxide coated with tannic acid for humidity sensor. Polymer 84:89–98

    Article  CAS  Google Scholar 

  47. El Sayed AM, Morsi WM (2014) α-Fe2O3/(PVA+ PEG) nanocomposite films synthesis optical and dielectric characterizations. J Mater Sci 49:5378–5387

    Article  Google Scholar 

  48. Sheelam A, Muneeb A, Talukdar B, Ravindranath R, Huang SJ, Kuo CH, Sankar R (2020) Flexible and free-standing polyvinyl alcohol-reduced graphene oxide-Cu2O/CuO thin films for electrochemical reduction of carbon dioxide. J Appl Electrochem 50:979–991

    Article  CAS  Google Scholar 

  49. Gozutok M, Sadhu V, Sasmazel HT (2019) Development of poly (vinyl alcohol)(PVA)/reduced graphene oxide (rGO) electrospun mats. J Nanosci Nanotechnol 19:4292–4298

    Article  CAS  PubMed  Google Scholar 

  50. Li J, Shao L, Zhou X, Wang Y (2014) Fabrication of high strength PVA/rGO composite fibers by gel spinning. Rsc Adv 4:43612–43618

    Article  CAS  Google Scholar 

  51. Singh P, Bharati DC, Gupta PN, Saroj AL (2018) Vibrational, thermal and ion transport properties of PVA-PVP-PEG-MeSO4Na based polymer blend electrolyte films. J Non Cryst Solids 494:21–30

    Article  CAS  Google Scholar 

  52. Ramamohan K, Achari VB, Sharma AK, Xiuyang L (2015) Electrical and structural characterization of PVA/PEG polymer blend electrolyte films doped with NaClO 4. Ionics 21:1333–1340

    Article  CAS  Google Scholar 

  53. Zidan HM, Abdelrazek EM, Abdelghany AM, Tarabiah AE (2019) Characterization and some physical studies of PVA/PVP filled with MWCNTs. J Mater Res Technol 8:904–913

    Article  CAS  Google Scholar 

  54. Shetty SK, Hegde S, Ravindrachary V, Sanjeev G, Bhajantri RF, Masti SP (2021) Dielectric relaxations and ion transport study of NaCMC: NaNO 3 solid polymer electrolyte films. Ionics 27:2509–2525

    Article  CAS  Google Scholar 

  55. Saadiah MA, Zhang D, Nagao Y, Muzakir SK, Samsudin AS (2019) Reducing crystallinity on thin film-based CMC/PVA hybrid polymer for application as a host in polymer electrolytes. J Non Cryst Solids 511:201–211

    Article  CAS  Google Scholar 

  56. Ghosh TN, Pradhan SS, Sarkar SK, Bhunia AK (2021) On the incorporation of the various reduced graphene oxide into poly (vinyl alcohol) nano-compositions: comparative study of the optical structural properties and magnetodielectric effect. J Mater Sci Mater Electron 32:19157–19178

    Article  CAS  Google Scholar 

  57. Kim S, Shimazu J, Fukaminato T, Ogata T, Kurihara S (2017) Thermal conductivity of graphene oxide-enhanced polyvinyl alcohol composites depending on molecular interaction. Polymer 129:201–206

    Article  CAS  Google Scholar 

  58. Singh WI, Sinha S, Devi NA, Nongthombam S, Laha S, Swain BP (2021) Investigation of chemical bonding and electronic network of rGO/PANI/PVA electrospun nanofiber. Polym Bull 78:6613–6629

    Article  CAS  Google Scholar 

  59. Sharma B, Gautam S, Shekhar S, Sharma R, Rajawat DS, Jain P (2019) Facile synthesis of poly (vinyl alcohol) nanocomposite & its potential application to enhance electrochemical performance. Polym Test 74:119–126

    Article  CAS  Google Scholar 

  60. Park GT, Chang JH (2019) Comparison of Properties of PVA Nanocomposites Containing Reduced Graphene Oxide and Functionalized Graphene. Polymers 11(3):450

    Article  PubMed Central  Google Scholar 

  61. Koduru HK, Scarpelli F, Marinov YG, Hadjichristov GB, Rafailov PM, Miloushev IK, Petrov AG, Godbert N, Bruno L, Scaramuzza N (2018) Characterization of PEO/PVP/GO nanocomposite solid polymer electrolyte membranes: microstructural thermo-mechanical and conductivity properties. Ionics 24:3459–3473

    Article  CAS  Google Scholar 

  62. Hu K, Kulkarni DD, Choi I, Tsukruk VV (2014) Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci 39:1934–1972

    Article  CAS  Google Scholar 

  63. Ibrahim S, Johan MR (2012) Thermolysis and conductivity studies of poly (ethylene oxide)(PEO) based polymer electrolytes doped with carbon nanotube. Int J Electrochem Sci 7:2596–2615

    CAS  Google Scholar 

  64. Mahendia S, Kandhol G, Deshpande UP, Kumar S (2016) Determination of glass transition temperature of reduced graphene oxide-poly (vinyl alcohol) composites using temperature dependent Fourier transform infrared spectroscopy. J Mol Struct 1111:46–54

    Article  CAS  Google Scholar 

  65. Edayadiyil JJ, Abraham J, Rajeevan S, George SC (2021) Synthesis and characterization of natural rubber/graphene quantum dot nanocomposites. J Polym Res 28:358

    Article  CAS  Google Scholar 

  66. Wang W, Xu H, Chen J, Shen Y, Bertóti I, Guo X, Shi X, Elsiddig ZA (2018) Structure mechanical and electrochemical properties of thermally reduced graphene oxide-poly (vinyl alcohol) foams. Period Polytech Chem Eng 62:8–20

    CAS  Google Scholar 

  67. Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, Deshmukh RR, Pasha SK, AlMaadeed MA, Chidambaram K (2016) Graphene oxide reinforced polyvinyl alcohol/polyethylene glycol blend composites as high-performance dielectric material. J Polym Res 23:1–3

    Article  CAS  Google Scholar 

  68. Wadhwa H, Kandhol G, Deshpande UP, Mahendia S, Kumar S (2020) Thermal stability and dielectric relaxation behavior of in situ prepared poly (vinyl alcohol)(PVA)-reduced graphene oxide (RGO) composites. Colloid Polym Sci 298:1319–1333

    Article  CAS  Google Scholar 

  69. Ates M, Kuzgun O, Yildirim M, Ozkan H (2020) rGO/MnO 2/Polyterthiophene ternary composite: pore size control, electrochemical supercapacitor behavior and equivalent circuit model analysis. J Polym Res 27(8):1–8

    Article  Google Scholar 

  70. Shetty SK, Noor IM (2021) Effect of new crystalline phase on the ionic conduction properties of sodium perchlorate salt doped carboxymethyl cellulose biopolymer electrolyte films. J Polym Res 28:415

    Article  CAS  Google Scholar 

  71. Badawi A, Alharthi SS, Alotaibi AA, Althobaiti MG (2021) Investigation of the mechanical and electrical properties of SnS filled PVP/PVA polymeric composite blends. J Polym Res 28:205

    Article  CAS  Google Scholar 

  72. Canbay CA, Nihan ÜN (2020) PVA/GO ve PVA/rGO Polimerik Nanokompozit Malzemelerin Üretimi ve Karakterizasyonu. Fırat Üniversitesi Fen Bilimleri Dergisi 32:53–56

    Google Scholar 

  73. Falqi FH, Bin-Dahman OA, Hussain M, Al-Harthi MA (2018) Preparation of miscible PVA/PEG blends and effect of graphene concentration on thermal crystallization morphological and mechanical properties of PVA/PEG (10 wt%) blend. Int J Polym Sci 2018

  74. Kulshrestha N, Gupta PN (2016) Structural and electrical characterizations of 50: 50 PVA: starch blend complexed with ammonium thiocyanate. Ionics 22:671–681

    Article  CAS  Google Scholar 

  75. Arya A, Sadiq M, Sharma AL (2019) Structural electrical and ion transport properties of free-standing blended solid polymeric thin films. Polym Bull 76:5149–5172

    Article  CAS  Google Scholar 

  76. Ates M, Sarac AS (2009) Electrochemical impedance spectroscopy of poly [carbazole-co-Np-tolylsulfonyl pyrrole] on carbon fiber microelectrodes equivalent circuits for modelling. Prog Org Coat 65:281–287

    Article  CAS  Google Scholar 

  77. Devi M, Kumar A (2018) Structural thermal and dielectric properties of in-situ reduced graphene oxide−polypyrrole nanotubes nanocomposites. Mater Res Bull 97:207–214

    Article  CAS  Google Scholar 

  78. Li Y, Wang J, Tang J, Liu Y, He Y (2009) Conductive performances of solid polymer electrolyte films based on PVB/LiClO4 plasticized by PEG200 PEG400 and PEG600. J Power Sources 187(2):305–311

    Article  CAS  Google Scholar 

  79. Awadhia A, Patel SK, Agrawal SL (2006) Dielectric investigations in PVA based gel electrolytes. Prog Cryst Growth Charact Mater 52:61–68

    Article  CAS  Google Scholar 

  80. Abdelrazek EM, Abdelghany AM, Tarabiah AE, Zidan HM (2019) AC conductivity and dielectric characteristics of PVA/PVP nanocomposite filled with MWCNTs. J Mater Sci Mater Electron 30(16):15521–15533

    Article  CAS  Google Scholar 

  81. Mollik SI, Alam RB, Islam MR (2021) Significantly improved dielectric properties of bio-compatible starch/reduced graphene oxide nanocomposites. Synth Met 271:116624

  82. Kumar D, Gohel K, Kanchan DK, Mishra K (2020) Dielectrics and battery studies on flexible nanocomposite gel polymer electrolyte membranes for sodium batteries. J Mater Sci Mater Electron 31:13249–13260

    Article  CAS  Google Scholar 

  83. Krishnakumar V, Shanmugam G (2012) Structural Optical and dielectric properties of PbS-PVA-PEG nanocomposite film. Sci Adv Mater 4:1247–1253

    Article  CAS  Google Scholar 

  84. Kumar M, Srivastava N (2014) Investigation of electrical and dielectric properties of NaI doped synthesized systems. J Non Cryst Solids 389:28–34

    Article  CAS  Google Scholar 

  85. Yassin AY, Mohamed AR, Abdelghany AM, Abdelrazek EM (2018) Enhancement of dielectric properties and AC electrical conductivity of nanocomposite using poly (vinyl chloride-co-vinyl acetate-co-2-hydroxypropyl acrylate) filled with graphene oxide. J Mater Sci Mater Electron 29:15931–15945

    Article  CAS  Google Scholar 

  86. Kandhol G, Wadhwa H, Chand S, Mahendia S, Kumar S (2019) Study of dielectric relaxation behavior of composites of Poly (vinyl alchohol)(PVA) and Reduced graphene oxide (RGO). Vacuum 160:384–393

    Article  CAS  Google Scholar 

  87. Verma H, Mishra K, Rai DK (2020) Sodium ion conducting nanocomposite polymer electrolyte membrane for sodium ion batteries. J Solid State Electrochem 24:521–532

    Article  CAS  Google Scholar 

  88. Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, AlMaadeed MA, Pasha SK, Deshmukh RR, Chidambaram K (2017) Graphene oxide reinforced poly (4-styrenesulfonic acid)/polyvinyl alcohol blend composites with enhanced dielectric properties for portable and flexible electronics. Mater Chem Phys 186:188–201

    Article  CAS  Google Scholar 

  89. Sengwa RJ, Dhatarwal P (2020) Predominantly chain segmental relaxation dependent ionic conductivity of multiphase semicrystalline PVDF/PEO/LiClO4 solid polymer electrolytes. Electrochim Acta 338:135890

  90. Koduru HK, Marinov YG, Kaleemulla S, Rafailov PM, Hadjichristov GB, Scaramuzza N (2021) Fabrication and characterization of magnesium—ion-conducting flexible polymer electrolyte membranes based on a nanocomposite of poly (ethylene oxide) and potato starch nanocrystals. J Solid State Electrochem 25:2409–2428

    Article  CAS  Google Scholar 

  91. Mohammed MI, Fouad SS, Mehta N (2018) Dielectric relaxation and thermally activated ac conduction in (PVDF)/(rGO) nano-composites: role of rGO over different fillers. J Mater Sci Mater Electron 29:18271–18281

    Article  CAS  Google Scholar 

  92. Goodenough JB (2013) Evolution of strategies for modern rechargeable batteries. Acc Chem Res 46(5):1053–1061

    Article  CAS  PubMed  Google Scholar 

  93. Al-Abbas SS, Ghazi RA, Al-shammari AK, Aldulaimi NR, Abdulridha AR, Al-Nesrawy SH, Al-Bermany E (2021) Influence of the polymer molecular weights on the electrical properties of Poly (vinyl alcohol)–Poly (ethylene glycols)/Graphene oxide nanocomposites. Mater Today Proc 42:2469–2474

    Article  CAS  Google Scholar 

  94. Arya A, Sharma AL (2017) Temperature and salt-dependent dielectric properties of blend solid polymer electrolyte complexed with LiBOB. Macromol Res 27:334–345

    Article  Google Scholar 

  95. Zhang X, Wang X, Liu S, Tao Z, Chen J (2018) A novel PMA/PEG-based composite polymer electrolyte for all-solid-state sodium ion batteries. Nano Res 11:6244–6251

    Article  CAS  Google Scholar 

  96. Song S, Kotobuki M, Zheng F, Xu C, Savilov SV, Hu N, Lu L, Wang Y, Li WD (2017) A hybrid polymer/oxide/ionic-liquid solid electrolyte for Na-metal batteries. J Mater Chem A 5:6424–6431

    Article  CAS  Google Scholar 

  97. Vassal N, Salmon E, Fauvarque JF (2000) Electrochemical properties of an alkaline solid polymer electrolyte based on P (ECH-co-EO). Electrochim Acta 45:1527–1532

    Article  CAS  Google Scholar 

  98. Xie R, Yu X, Li Z, Zhang Q, Chen J, Lu J, Hou Y, He Q, Luo Y, Gao X (2021) A stretchable all-solid-state polymer electrolyte with decoupled ion transport and mechanical supporting networks to achieve high and stable ion-conductivity. Solid State Ion 370:115733

  99. Hashmi SA, Bhat MY, Singh MK, Sundaram NK, Raghupathy BP, Tanaka H (2016) Ionic liquid-based sodium ion-conducting composite gel polymer electrolytes: effect of active and passive fillers. J Solid State Electrochem 20:2817–2826

    Article  CAS  Google Scholar 

  100. Mazuki N, Majeed AP, Samsudin AS (2020) Study on electrochemical properties of CMC-PVA doped NH 4 Br based solid polymer electrolytes system as application for EDLC. J Polym Res 27:135

    Article  CAS  Google Scholar 

  101. Yao S, Li Y, Zhou Z, Yan H (2015) Graphene oxide-assisted preparation of poly (vinyl alcohol)/carbon nanotube/reduced graphene oxide nanofibers with high carbon content by electrospinning technology. RSC Adv 111:91878–91887

    Article  Google Scholar 

  102. Alipoori S, Torkzadeh MM, Moghadam MM, Mazinani S, Aboutalebi SH, Sharif F (2019) Graphene oxide: An effective ionic conductivity promoter for phosphoric acid-doped poly (vinyl alcohol) gel electrolytes. Polymer 184:121908

  103. Theophile N, Jeong HK (2017) Electrochemical properties of poly (vinyl alcohol) and graphene oxide composite for supercapacitor applications. Chem Phys Lett 669:125–129

    Article  CAS  Google Scholar 

  104. Vicente J, Costa P, Lanceros-Mendez S, Abete JM, Iturrospe A (2019) Electromechanical properties of PVDF-based polymers reinforced with nanocarbonaceous fillers for pressure sensing applications. Materials 21:3545

    Article  Google Scholar 

  105. Aram E, Ehsani M, Khonakdar HA, Abdollahi S (2019) Improvement of electrical, thermal, and mechanical properties of poly (methyl methacrylate)/poly (ethylene oxide) blend using graphene nanosheets. J Thermoplast Compos Mater 9:1176–1189

    Article  Google Scholar 

  106. Sa K, Mahakul PC, Saha S, Vishwakarma PN, Nanda KK, Mahanandia P (2019) Investigation of electrical, mechanical, and thermal properties of functionalized multiwalled carbon nanotubes-reduced graphene Oxide/PMMA hybrid nanocomposites. Polym Eng Sci 5:1075–1083

    Article  Google Scholar 

  107. Zahid M, Nawab Y, Gulzar N, Rehan ZA, Shakir MF, Afzal A, Rashid IA, Tariq A (2020) Fabrication of reduced graphene oxide (RGO) and nanocomposite with thermoplastic polyurethane (TPU) for EMI shielding application. J Mater Sci Mater Electron 2:967–974

    Article  Google Scholar 

  108. Zhou R, Li P, Fan Z, Du D, Ouyang J (2017) Stretchable heaters with composites of an intrinsically conductive polymer reduced graphene oxide and an elastomer for wearable thermotherapy. J Mater Chem C 6:1544–1551

    Article  Google Scholar 

  109. Shrivatsav R, Mahalingam V, Narayanan EL, Balaji NN, Balu M, Prasad RK, Kumaresan D (2018) Characterization of poly methyl methaacrylate and reduced graphene oxide composite for application as electrolyte in dye sensitized solar cells. Mater Res Express 4:046204

  110. Azli AA, Manan NS, Kadir MF (2015) Conductivity and dielectric studies of lithium trifluoromethanesulfonate doped polyethylene oxide-graphene oxide blend-based electrolytes. Adv Mater Sci Eng 1:2015

    Google Scholar 

  111. Suksanit S, Pattananuwat P, Potiyaraj P (2020) Improvement of Electrical Conductivity of Polyamide 6/Polyaniline Blends by Graphene. Key Eng Mater 831:117–121

    Article  Google Scholar 

  112. Yang JH, Lee YD (2012) Highly electrically conductive rGO/PVA composites with a network dispersive nanostructure. J Mater Chem 17:8512–8517

    Article  Google Scholar 

  113. Gozutok M, Sadhu V, Sasmazel HT (2019) Development of poly (vinyl alcohol) (PVA)/reduced graphene oxide (rGO) electrospun mats. J Nanosci Nanotechnol 19:4292–4298

    Article  CAS  PubMed  Google Scholar 

  114. Yuan B, Wang B, Hu Y, Mu X, Hong N, Liew KM, Hu Y (2016) Electrical conductive and graphitizable polymer nanofibers grafted on graphene nanosheets: Improving electrical conductivity and flame retardancy of polypropylene. Compos A Appl Sci Manuf 84:76–86

    Article  CAS  Google Scholar 

  115. Tripathi SN, Saini P, Gupta D, Choudhary V (2013) Electrical and mechanical properties of PMMA/reduced graphene oxide nanocomposites prepared via in situ polymerization. J Mater Sci 18:6223–6232

    Article  Google Scholar 

  116. Gaffer A, Aman D (2015) Preparation and Characterization of Conductive Polymer/Reduced Graphite Oxide (RGO) Composite via Miniemulsion Polymerization. Chem Proc Eng Res 38:35–39

    Google Scholar 

  117. Li S, Chen Y, He X, Mao X, Zhou Y, Xu J, Yang Y (2019) Modifying reduced graphene oxide by conducting polymer through a hydrothermal polymerization method and its application as energy storage electrodes. Nanoscale Res Lett 14:226

    Article  PubMed  PubMed Central  Google Scholar 

  118. Zhao X, Tao CA, Li Y, Chen X, Wang J, Gong H (2020) Preparation of gel polymer electrolyte with high lithium-ion transference number using GO as filler and application in lithium battery. Ionics 26:4299–4309

    Article  CAS  Google Scholar 

  119. Xu P, Chen H, Zhou X, Xiang H (2021) Gel polymer electrolyte based on PVDF-HFP matrix composited with rGO-PEG-NH2 for high-performance lithium-ion battery. J Membr Sci 617:118660

  120. Prabakaran K, Jandas PJ, Mohanty S, Nayak SK (2018) Synthesis characterization of reduced graphene oxide nanosheets and its reinforcement effect on polymer electrolyte for dye sensitized solar cell applications. Sol Energy 170:442–453

    Article  CAS  Google Scholar 

  121. Ahmadian-Alam L, Teymoori M, Mahdavi H (2020) Polymer grafted GO/sulfonated copolyimide proton exchange nanocomposite membrane: as a polymer electrolyte membranes fuel cell. J Polym Res 27:302

    Article  CAS  Google Scholar 

  122. Lai WC, Fan RW (2021) A simple low-cost method to prepare gel electrolytes incorporating graphene oxide with increased ionic conductivity and electrochemical stability. J Electroanal Chem 19:115889

Download references

Acknowledgements

Authors (MS) acknowledge the Prof. Sevi Murugavel, Department of Physics and Astrophysics for helping Dielectric measurement & AC conductivity analysis, University of Delhi, Delhi-110088. Author (MS) thanks the Prof. S. A. Hashmi, Department of Physics and Astrophysics for helping me in coin cell preparation, University of Delhi, Delhi-110088. Dr Yogesh Kumar, Department of Physics, ARSD University of Delhi, Delhi-110021 for helping me in electrochemical workstation facilities. Centre for Nanoscience & Nanotechnology (CNN) and Central Instrumentation Facility (CIF), Jamia Millia Islamia, New Delhi, India for providing their characterization facilities. Author (J. Ali) thanks to University Grant Commission for providing financial assistance in the form of UGC-BSR Start-up Research Grant [Sanction No. F.30-359/2017 (BSR)].

Author information

Authors and Affiliations

Authors

Contributions

Mohd Sadiq: Idea developed, experimental work, sample preparation, data curation and manuscript written. Mohammad Moeen Hasan Raza: validation and editing. Mohammad Zulfequar: Validation and Supervise the work. Javid Ali: Project administration, Funding acquisition, and supervise the work.

Corresponding author

Correspondence to Javid Ali.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadiq, M., Raza, M.M.H., Zulfequar, M. et al. Facile synthesis of highly flexible sodium ion conducting polyvinyl alcohol (PVA)-polyethylene glycol (PEG) blend incorporating reduced graphene-oxide (rGO) composites for electrochemical devices application. J Polym Res 29, 107 (2022). https://doi.org/10.1007/s10965-022-02892-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-02892-z

Keywords

Navigation