Skip to main content
Log in

Mechanosynthesis of high molecular weight fluorescent derivatives of chitosan, linear and non-linear optical characterization

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Three chitosan-derived compounds, Ch-I, Ch-Qn, and Ch-TPA, were synthesized through condensation reactions between high-molecular weight chitosan and three different aldehydes. Mechanosynthesis, a fast and solvent-free synthesis method, was used instead of a depolymerization. The chemical structure of the compounds was elucidated by Fourier-Transform Infrared (FT-IR) spectroscopy. The optical properties of the new compounds were evaluated by ultraviolet/visible (UV/Vis) and fluorescence spectroscopic techniques. The compounds Ch-I, Ch-Qn, and Ch-TPA presented absorptions in the range of 273 to 400 nm and emissions between 300 and 700 nm with Ch-TPA presenting the greatest redshift in absorption and emission. Ch-I, Ch-Qn, and Ch-TPA were characterized by the Z-scan technique, and the results indicate that Ch-I, Ch-Qn, and Ch-TPA exhibit non-linear optic behavior. Ch-TPA showed the most promising optical properties. These results indicate that it is possible to obtain promising materials derived from chitosan using mechanosynthesis and using high-molecular weight chitosan without the need to depolymerize it. Mechanosynthesis requires a short reaction time, is free of solvents, and has the potential for biomedical applications as optical and/or fluorescent biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Han T, Liu L, Wang D et al (2021) Mechanochromic fluorescent polymers enabled by AIE processes. Macromol Rapid Commun 42:1–14. https://doi.org/10.1002/marc.202000311

    Article  CAS  Google Scholar 

  2. Yu T, Han Y, Yao H et al (2020) Polymeric optoelectronic materials with low-voltage colorless-to-black electrochromic and AIE-activity electrofluorochromic dual-switching properties. Dye Pigment 181:108499. https://doi.org/10.1016/j.dyepig.2020.108499

    Article  CAS  Google Scholar 

  3. Mondal S, Agam Y, Amdursky N (2020) Enhanced Proton Conductivity across Protein Biopolymers Mediated by Doped Carbon Nanoparticles. Small 16:1–7. https://doi.org/10.1002/smll.202005526

    Article  CAS  Google Scholar 

  4. Kim JY, Nagamani S, Liu L et al (2020) A DNA and self-doped conjugated polyelectrolyte assembled for organic optoelectronics and bioelectronics. Biomacromolecules 21:1214–1221. https://doi.org/10.1021/acs.biomac.9b01667

    Article  CAS  Google Scholar 

  5. Jian M, Zhang Y, Liu Z (2020) Natural biopolymers for flexible sensing and energy devices. Chinese J Polym Sci 38:459–490. https://doi.org/10.1007/s10118-020-2379-9

  6. Fares OO, AL-Oqla FM (2020) Chapter 11 - Modern Electrical Applications of Biopolymers. In: Faris M. Al-Oqla, S.M. Sapuan (eds) Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers. Elsevier, pp 173–184. ISBN 9780128196618. https://doi.org/10.1016/B978-0-12-819661-8.00011-1

  7. Hu R, Qin A, Tang BZ (2020) AIE polymers: Synthesis and applications. Prog Polym Sci 100:101176. https://doi.org/10.1016/j.progpolymsci.2019.101176

    Article  CAS  Google Scholar 

  8. Bayoumy AM, Refaat A, Yahia IS et al (2020) Functionalization of graphene quantum dots (GQDs) with chitosan biopolymer for biophysical applications. Opt Quantum Electron 52:1–14. https://doi.org/10.1007/s11082-019-2134-z

    Article  CAS  Google Scholar 

  9. Li X, Ding C, Li X et al (2020) Electronic biopolymers: From molecular engineering to functional devices. Chem Eng J 397:125499. https://doi.org/10.1016/j.cej.2020.125499

    Article  CAS  Google Scholar 

  10. Song J, Winkeljann B, Lieleg O (2020) Biopolymer-Based Coatings: Promising Strategies to Improve the Biocompatibility and Functionality of Materials Used in Biomedical Engineering. Adv Mater Interfaces 7(17). https://doi.org/10.1002/admi.202000850

    Article  Google Scholar 

  11. Zhang L, Yang Y, Tan J, Yuan Q (2020) Chemically modified nucleic acid biopolymers used in biosensing. Mater Chem Front 4:1315–1327. https://doi.org/10.1039/d0qm00026d

    Article  CAS  Google Scholar 

  12. Dai JC, Wu XT, Fu ZY et al (2002) Synthesis, structure, and fluorescence of the novel cadmium(II) - Trimesate coordination polymers with different coordination architectures. Inorg Chem 41:1391–1396. https://doi.org/10.1021/ic010794y

    Article  CAS  PubMed  Google Scholar 

  13. Bin XuH, Su ZM, Shao KZ et al (2004) A novel strong fluorescent three-dimensional supramolecular coordination polymer based on bridging terephthalate. Inorg Chem Commun 7:260–263. https://doi.org/10.1016/j.inoche.2003.11.017

    Article  CAS  Google Scholar 

  14. Shi X, Zhu G, Wang X et al (2005) Polymeric frameworks constructed from a metal-organic coordination compound, in 1-D and 2-D systems: Synthesis, crystal structures, and fluorescent properties. Cryst Growth Des 5:341–346. https://doi.org/10.1021/cg049884e

    Article  CAS  Google Scholar 

  15. Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering. Part I Traditional factors Tissue Eng 7:679–689. https://doi.org/10.1089/107632701753337645

    Article  CAS  PubMed  Google Scholar 

  16. González-jiménez AA, Malmierca MA, Bernal PP et al (2014) Biomateriales elastoméricos en ingeniería tisular. Revista de Plasticos Modernos 107:21–24. http://hdl.handle.net/10261/116000

  17. Lárez Velásquez C (2008) Algunas potencialidades de la quitina y el quitosano para usos relacionados con la agricultura en Latinoamérica. Rev Cient UDO Agric 8:1–22

    Google Scholar 

  18. Huang L, Bi S, Pang J et al (2020) Preparation and characterization of chitosan from crab shell (Portunus trituberculatus) by NaOH/urea solution freeze-thaw pretreatment procedure. Int J Biol Macromol 147:931–936. https://doi.org/10.1016/j.ijbiomac.2019.10.059

    Article  CAS  PubMed  Google Scholar 

  19. Sanchez A, Sibaja Ballesteros M, Vega-Baudrit J, Madrigal S (2007) Sintesis y caracterización de hidrogeles de quitosano obtenido a partir del camarón langostino (Pleuroncodes planipes) con potenciales aplicaciones biomedicas. Sint y Caracter hidrogeles quitosano obtenido a partir del camarón langostino (Pleuroncodes planipes) con potenciales. Apl Biomed 8:241–267

  20. Rodríguez N, Valderrama A, Alarcón H (2010) Preparación de partículas de quitosano reticuladas con tripolifosfato Y modificadas con polietilenglicol. Rev la Soc Química del Perú 76:336–354

    Google Scholar 

  21. Wu T, Huang J, Jiang Y et al (2018) Formation of hydrogels based on chitosan/alginate for the delivery of lysozyme and their antibacterial activity. Food Chem 240:361–369. https://doi.org/10.1016/j.foodchem.2017.07.052

    Article  CAS  PubMed  Google Scholar 

  22. Sánchez-Duarte RG et al (2017) Síntesis de hidrogeles de quitosano a partir de cáscara de camarón para ensayos de adsorción de cobre. Rev Int Contam Ambient 33:93–98. ISSN 01884999. <https://www.revistascca.unam.mx/rica/index.php/rica/article/view/RICA.2017.33.esp02.09/46691>. https://doi.org/10.20937/RICA.2017.33.esp02.09

  23. Minh NC, Nguyen VH, Schwarz S et al (2019) Preparation of water soluble hydrochloric chitosan from low molecular weight chitosan in the solid state. Int J Biol Macromol 121:718–726. https://doi.org/10.1016/j.ijbiomac.2018.10.130

    Article  CAS  PubMed  Google Scholar 

  24. de Farias BS, Grundmann DDR, Rizzi FZ et al (2019) Production of low molecular weight chitosan by acid and oxidative pathways: Effect on physicochemical properties. Food Res Int 123:88–94. https://doi.org/10.1016/j.foodres.2019.04.051

    Article  CAS  PubMed  Google Scholar 

  25. Luo J, Sun J, Luo X et al (2019) Low molecular weight chitosan-based conjugates for efficient Rhein oral delivery: synthesis, characterization, and pharmacokinetics. Drug Dev Ind Pharm 45:96–104. https://doi.org/10.1080/03639045.2018.1522326

    Article  CAS  PubMed  Google Scholar 

  26. Hua C, Li Y, Wang X et al (2019) The effect of low and high molecular weight chitosan on the control of gray mold (Botrytis cinerea) on kiwifruit and host response. Sci Hortic (Amsterdam) 246:700–709. https://doi.org/10.1016/j.scienta.2018.11.038

    Article  CAS  Google Scholar 

  27. Bof MJ, Bordagaray VC, Locaso DE, García MA (2015) Chitosan molecular weight effect on starch-composite film properties. Food Hydrocoll 51:281–294. https://doi.org/10.1016/j.foodhyd.2015.05.018

    Article  CAS  Google Scholar 

  28. Rabasović MD, Pantelić DV, Jelenković BM et al (2015) Nonlinear microscopy of chitin and chitinous structures: a case study of two cave-dwelling insects. J Biomed Opt 20:1. https://doi.org/10.1117/1.jbo.20.1.016010

    Article  Google Scholar 

  29. López-Cabrera D, Ramos-Ortiz G, González-Santillán E, Espinosa-Luna R (2020) Characterization of the fluorescence intensity and color tonality in the exoskeleton of scorpions. J Photochem Photobiol B Biol 209:111945. https://doi.org/10.1016/j.jphotobiol.2020.111945

    Article  CAS  Google Scholar 

  30. Shan D, Gerhard E, Zhang C et al (2018) Polymeric biomaterials for biophotonic applications. Bioact Mater 3:434–445. https://doi.org/10.1016/j.bioactmat.2018.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bhagyaraj S, Oluwafemi OS, Krupa I (2020) Chapter 13 - Polymers in optics. In: AlMaadeed MAA, Ponnamma D, Carignano MA eds) Polymer Science and Innovative Applications. Elsevier, pp 423–455. ISBN 9780128168080. https://doi.org/10.1016/B978-0-12-816808-0.00013-5

  32. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian DJ (2009) Gaussian 09W. J Am Chem Soc 137:3811–3826

    Google Scholar 

  33. Sheik-Bahae M, Said AA, Wei TH et al (1990) Sensitive measurement of optical nonlinearities using a single beam. IEEE J Quantum Electron 26:760–769. https://doi.org/10.1109/3.53394

    Article  CAS  Google Scholar 

  34. Sheik-Bahae M, Van Stryland E (1998) Z-scan measurements of optical nonlinearities. Charact Tech Tabul Org Nonlinear Mater 655–692. https://doi.org/10.1142/S0218863509004671

  35. Antony R, Theodore David S, Saravanan K et al (2013) Synthesis, spectrochemical characterisation and catalytic activity of transition metal complexes derived from Schiff base modified chitosan. Spectrochim Acta - Part A Mol Biomol Spectrosc 103:423–430. https://doi.org/10.1016/j.saa.2012.09.101

    Article  CAS  Google Scholar 

  36. Luo Y, Wang TTY, Teng Z et al (2013) Encapsulation of indole-3-carbinol and 3,3′-diindolylmethane in zein/carboxymethyl chitosan nanoparticles with controlled release property and improved stability. Food Chem 139:224–230. https://doi.org/10.1016/j.foodchem.2013.01.113

    Article  CAS  PubMed  Google Scholar 

  37. Kumar S, Koh J (2012) Physiochemical, optical and biological activity of chitosan-chromone derivative for biomedical applications. Int J Mol Sci 13:6103–6116. https://doi.org/10.3390/ijms13056102

    Article  CAS  Google Scholar 

  38. Rahimi S, Khoee S, Ghandi M (2019) Preparation and characterization of rod-like chitosan–quinoline nanoparticles as pH-responsive nanocarriers for quercetin delivery. Int J Biol Macromol 128:279–289. https://doi.org/10.1016/j.ijbiomac.2019.01.137

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors want to thank to CONACyT for the scholarship given to Abner H. Rojas Calva number 2018-000012-01NACF-03762 to support his studies from which this research was possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Vázquez-García.

Ethics declarations

Conflicts of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PNG 30 KB)

Supplementary file2 (DOCX 24 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas-Calva, A.H., Hernández-Ortiz, O.J., Muñoz-Pérez, F.M. et al. Mechanosynthesis of high molecular weight fluorescent derivatives of chitosan, linear and non-linear optical characterization. J Polym Res 28, 370 (2021). https://doi.org/10.1007/s10965-021-02703-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02703-x

Keywords

Navigation