Skip to main content
Log in

Enhancement of chromic-piezoelectric sensitivity responses of polyvinylidene fluoride/polydiacetylene nanofibers using graphene oxide

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The composite nanofiber of polyvinylidene fluoride (PVDF)/polydiacetylene (PDA) is one of the chromic and piezoelectric sensors. In this research, we investigated the effect of adding graphene oxide (GO) nanoparticle to this composite on chromic and piezoelectric properties of the PVDF/PDA/GO. We have also examined the mechanical properties of the PVDF/PDA/GO composite. 5 nanofiber samples with 23%w/v PVDF concentration and 1/3 diacetylene with 0.1, 0.5, 1, 1.5 and, 2.5 percent of GO were prepared via the hybrid electrospinning method. The nanofiber PVDF/PDA, PVDF/GO1% and PVDF were also produced as reference samples. The SEM images of PVDF/PDA/GO nanofibers show that the thinnest nanofibers could be obtained at 1% of GO proportion. In the FTIR test, the growth of β-phase of the sample PVDF/PDA/GO in comparison with PVDF/PDA without GO was obtained. Also, with putting up the samples in the oven of 40 °C and increasing the temperature up to 110 °C, the PVDF/PDA/GO shows same result with PVDF/PDA. In addition, they were thermochromics between 60–70 °C and reversible against the heat at 80 °C. In conclusion, the results show that adding 1% of GO nanoparticle to the PVDF/PDA/GO composite nanofiber can improve significantly the chromic and piezoelectric sensitivity of samples and also the mechanical and physical properties of the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Stankovich S, Dikin A, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen SBT, Ruoff RS (2006) Nature 442:282–286

  2. Kumar HV, Woltornist SJ, Adamson DH (2016) Carbon 98:491–495

  3. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

  4. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Prog Polym Sci 35:1350–1375

    Article  CAS  Google Scholar 

  5. Trolier-McKinstry S (2008) Crystal Chemistry of Piezoelectric Materials. Springer, US, pp 39–56

    Google Scholar 

  6. Pu J, Yan X, Jiang Y, Chang C, Lin L (2010) Sensors Actuators. A Phys 164:131–136

    CAS  Google Scholar 

  7. Lee J, Pyo M, Lee SH, Kim J, Ra M, Kim WY, Park BJ, Lee CW, Kim JM (2014) Nat Commun 5:1–10

    Google Scholar 

  8. Yoon B, Lee S, Kim JM (2009) Chem Soc Rev 38:1958–1968

    Article  CAS  Google Scholar 

  9. Chen X, Zhou G, Peng X, Yoon J (2012) Chem Soc Rev 41:4610–4630

    Article  CAS  Google Scholar 

  10. Moazeni N, Merati AA, Latifi M, Sadrjahani M, Rouhani S (2018) Polymer (Guildf) 134:211–220

    Article  CAS  Google Scholar 

  11. Yoon J, Jung YS, Kim JM (2009) Adv Funct Mater 19:209–214

    Article  CAS  Google Scholar 

  12. Yoon J, Kim JM (2008) Macromol Chem Phys 209:2194–2203

  13. Mashud Alam AKM, Yapor JP, Reynolds MM, Li YV (2016) Materials (Basel) 9:202

  14. Issa AA, Al-Maadeed MAAS, Mrlík M, Luyt AS (2016) J Polym Res 23:232

    Article  Google Scholar 

  15. Abbasipour M, Khajavi R, Yousefi AA, Yazdanshenas ME, Razaghian F (2017) J Mater Sci Mater Electron 28:15942–15952

    Article  CAS  Google Scholar 

  16. Mohamed M, Kuo S (2018) Macromol Chem Phys 1800306

  17. Mohamed M, Hsu K, Kuo S (2015) Poly Chem 6:2423–2433

  18. Mohamed M, Hsiao C, Luo F, Daic L, Kuo S (2015) RSC Adv 5:45201–45212

    Article  CAS  Google Scholar 

  19. Samy M, Mohamed M, Kuo S (2020) Composite Science and Technology p. 108360

  20. Peng H, Sun X, Cai F, Chen X, Zhu Y, Liao G, Chen D, Li Q, Lu Y, Zhu Y, Jia Q (2009) Nat Nanotechnol 4:738–741

    Article  CAS  Google Scholar 

  21. Yun JS, Yang KS, Kim DH (2011) J Nanosci Nanotechnol 11:5663–5669

    Article  CAS  Google Scholar 

  22. Liang JJ, Huang L, Li N, Huang Y, Wu Y, Fang S, Oh J, Kozlov M, Ma Y, Li F, Baughman R, Chen Y (2012) ACS Nano 6:4508–4519

    Article  CAS  Google Scholar 

  23. Wang X, Sun X, Hu PA, Zhang J, Wang L, Feng W, Lei S, Yang B, Cao W (2013) Adv Funct Mater 23:6044–6050

    Article  CAS  Google Scholar 

  24. Ulaganathan M, Hansen RV, Drayton N, Hingorani H, Kutty RG, Joshi H, Sreejith S, Liu Z, Yang J, Zhao Y, Appl ACS (2016) Mater Interfaces 8:32643–32648

    Article  CAS  Google Scholar 

  25. Varghese Hansen R, Zhong L, Khor KA, Zheng L, Yang J (2016) Carbon NY 106:110–117

  26. Mahmoudifard M, Soleimani M, Hatamie S, Zamanlui S, Ranjbarvan P, Vossoughi M, Hosseinzadeh S (2016) Biomed Mater 11:025006

  27. Tashiro K, Kobayashi M, Tadokoro H (1981) Macromolecules 14:1757–1764

    Article  CAS  Google Scholar 

  28. Wegner VG (1970) Makromol Chemie 134:219–229

    Article  CAS  Google Scholar 

  29. Andrady AL (2008) Science and technology of polymer nanofibers. John Wiley & Sons, US

    Book  Google Scholar 

  30. Ramakrishna S, Fujihara K, Teo W, Lim T, Ma Z (2005) An introduction to electrospinning and nanofibers, Singapore

  31. Zheng J, He A, Li J, Han CC (2007) Macromol Rapid Commun 28:2159–2162

    Article  CAS  Google Scholar 

  32. Lanceros-Méndez S, Mano JF, Costa AM, Schmidt VH (2001) J Macromol Sci - Phys 40:517–527

    Article  Google Scholar 

  33. Kułek J, Hilczer B (1998) IEEE Trans Dielectr Electr Insul 5:45–50

    Article  Google Scholar 

  34. Mattsson B, Ericson H, Torell LM, Sundholm F (1999) J Polymer S Polymer Chemistry 15–21

  35. Wu A, Beck C, Ying Y, Federici J, Iqbal Z (2013) J Phys Chem C 117:19593–19600

    CAS  Google Scholar 

  36. Nie Q, Zhang Y, Zhang J, Zhang M (2006) J Mater Chem 16:546–549

    Article  CAS  Google Scholar 

  37. Gregorio R, Cestari M (1994) J Polym Sci Part B Polym Phys 32:859–870

    Article  CAS  Google Scholar 

  38. Liu X, Ma J, Wu X, Lin L, Wang X (2017) ACS Nano 11:1901–1910

    Article  CAS  Google Scholar 

  39. Roy K, Ghosh SK, Sultana A, Garain S, Xie M, Bowen CR, Henkel K, Schmeiβer D, Mandal D, Appl ACS (2019) Nano Mater 2:2013–2025

    CAS  Google Scholar 

  40. Baji A, Goo J (2015) Polym Eng Sci 55:1812–1817

    Article  CAS  Google Scholar 

  41. Moazeni N, Latifi M, Merati AA, Rouhani S (2017) Soft Matter 13:8178–8187

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Merati.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noorinezhad, E., Merati, A.A. & Moazeni, N. Enhancement of chromic-piezoelectric sensitivity responses of polyvinylidene fluoride/polydiacetylene nanofibers using graphene oxide. J Polym Res 28, 456 (2021). https://doi.org/10.1007/s10965-021-02641-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02641-8

Keywords

Navigation