Skip to main content
Log in

Thermosensitive PCEC hydrogel loaded with carbon nanotubes for slow-release lubrication effect

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Injectable hydrogel provides a new advance on lubrication of artificial joints due to its in situ forming property and long-term release effect. The adaptability improvement of the injectable hydrogel is crucial for its successful application in joint prostheses without weakening its injectable performance. In this paper, we reported a thermosensitive poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCEC) hydrogel embedded with carbon nanotubes (CNT) to improve its shear resistance and strain resistance. The phase-transition test demonstrated that the temperature range at the gel state for the PCEC/CNT hydrogel is higher than that of PCEC hydrogel under identical condition. We also demonstrated the CNT enhance the viscoelasticity of the thermosensitive PCEC hydrogel under the premise of retaining the effective slow-release behavior of bull serum albumin. The PCEC/CNT composite hydrogel has excellent slow-release and release-lubrication effects while maintaining its injectability. Consequently, it shows a promising application prospect as an injectable carrier, which provides slow-release lubrication effect on artificial joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Cheng X, Cheng G, Xing X et al (2020) Controlled release of adenosine from core-shell nanofibers to promote bone regeneration through stat3 signaling pathway. J Control Release 319:234–245

    Article  CAS  Google Scholar 

  2. Wang Y, Li Z, Ouyang J et al (2020) Controlled release of entrapped nanoparticles from thermoresponsive hydrogels with tunable network characteristics. Soft Matter 16(20):4756–4766

    Article  CAS  Google Scholar 

  3. Ma SH, Scaraggi M, Lin P et al (2017) Nanohydrogel brushes for switchable underwater adhesion. J Phys Chem C 121(15):8452–8463

    Article  CAS  Google Scholar 

  4. Eltom A, Zhong GY (2019) Muhammad A. Scaffold techniques and designs in tissue engineering functions and purposes: A review Adv Mater Sci Eng 283 1687–8434

  5. Mangir N, Eke G, Hasirci N et al (2019) An estradiol releasing, proangiogenic hydrogel as a candidate material for use in soft tissue interposition. Neurourol Urodynam 38(5):1195–1202

    Article  CAS  Google Scholar 

  6. Shen J, Chang L, Chen D et al (2021) Cross-linking induced thermo-responsive self-healing hydrogel with gel-sol–gel transition constructed on dynamic covalent bond[J]. J Polym Res 28(4):132

    Article  CAS  Google Scholar 

  7. Zheng SJ, Li ZQ, Liu ZS (2019) The inhomogeneous diffusion of chemically crosslinked polyacrylamide hydrogel based on poroviscosity theory. Sci China Technol Sc 62(8):1375–1384

    Article  CAS  Google Scholar 

  8. Yousef P, Marziyeh F, Yadollah O et al (2020) Synthesis and characterization of timolol maleate-loaded quaternized chitosan-based thermosensitive hydrogel: A transparent topical ocular delivery system for the treatment of glaucoma. Int J Biol Macromol 159:117–128

    Article  Google Scholar 

  9. Wu N, Yu H, Sun M et al (2020) Investigation on the structure and mechanical properties of highly tunable elastomeric silk fibroin hydrogels cross-linked by γ-ray radiation. ACS Appl Bio Mater 3(1):721–734

    Article  CAS  Google Scholar 

  10. Oveissi F, Naficy S, Le TYL et al (2019) Tough hydrophilic polyurethane-based hydrogels with mechanical properties similar to human soft tissues. J Mater Chem B 7(22):3512–3519

    Article  CAS  Google Scholar 

  11. Guo J, Li Y, Lu H et al (2018) PCEC hydrogel used on sustained-release hyaluronic acid delivery with lubrication effect. J Appl Polym Sci 135(22):46228

    Article  Google Scholar 

  12. Paradiso P, Serro AP, Saramago B et al (2016) Controlled release of antibiotics from vitamin e-loaded silicone-hydrogel contact lenses. J Pharm Sci 105(3):1164–1172

    Article  CAS  Google Scholar 

  13. Guo JD, Li Y, Li Y et al (2017) Biotribological application of poly(epsilon-caprolactone)-poly(ethylene glycol)-poly(epsilon-caprolactone) hydrogel as an efficient carrier with slow-release lubrication effect. J Mater Sci 52(20):12054–12066

    Article  CAS  Google Scholar 

  14. Huang YC, Lee CT, Don TM (2021) Physicochemical characteristics of thermo-responsive gelatin membranes containing carboxymethyl chitosan and poly(N -isopropylacrylamide-co-acrylic acid)[J]. J Polym Res 28(5):1–13

    Article  CAS  Google Scholar 

  15. Sayadnia S, Arkan E, Jahanban-Esfahlan R et al (2021) Thermal-responsive magnetic hydrogels based on Tragacanth gum for delivery of anticancer drugs[J]. J Polym Res 28(3):90

    Article  CAS  Google Scholar 

  16. Almomen A, Cho S, Yang CH et al (2015) Thermosensitive progesterone hydrogel: A safe and effective new formulation for vaginal application. Pharm Res-Dordr 32(7):2266–2279

    Article  CAS  Google Scholar 

  17. Guo J, Mei T, Li Y et al (2018) One-pot synthesis and lubricity of fluorescent carbon dots applied on pcl-peg-pcl hydrogel. J Biomater Science-polymer Edition 29(13):1549–1565

    Article  CAS  Google Scholar 

  18. Li XW, Shi T, Li B et al (2019) Subtractive manufacturing of stable hierarchical micro-nano structures on aa5052 sheet with enhanced water repellence and durable corrosion resistance. Mater Design 183:108152

  19. Zhang H, Liu Y, Hafezi M et al (2020) A distribution design for circular concave textures on sectorial thrust bearing pads. Tribol Int 149

  20. Lee S, Yoon HW, Lee DY (2007) Carbon nanotube/nafion composites for biomimetic artificial muscle actuators. J Korean Ceram Soc 44(4):198–201

    Article  CAS  Google Scholar 

  21. Guo JD, Mei TJ, Li Y et al (2018) Sustained-release application of pcec hydrogel on laser-textured surface lubrication. Mater Res Express 5(6): 065315

  22. Zhang Q, Liu Y, Ling HU et al (2008) Synthesis of thin-walled carbon nanotubes from methane by changing the ni/mo ratio in a ni/mo/mgo catalyst. New Carbon Mater 23(4):319–325

    Article  CAS  Google Scholar 

  23. Tong Z, Ma Q, Ni YQ et al (2019) Tribological properties of carbon fabric reinforced phenolic-based composites containing cnts@mos2 hybrids. J Mater Sci 54(23):14354–14366

    Article  CAS  Google Scholar 

  24. Ivanov AN (2012) Ultrasonic dispersion of Al–AlN and Al2O3 nanopowder agglomerates and of nanostructured AlOOH particles[J]. Russ Phys J 54(12):1413–1417

    Article  CAS  Google Scholar 

  25. Sauter C, Emin MA, Schuchmann HP et al (2008) Influence of hydrostatic pressure and sound amplitude on the ultrasound induced dispersion and de-agglomeration of nanoparticles[J]. Ultrason Sonochem 15(4):517–523

    Article  CAS  Google Scholar 

  26. S B, K KY, D T (2000) Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters 84(20): 4613–4616

  27. Peng Y , Hu Y , Wang H (2007) Tribological behaviors of surfactant-functionalized carbon nanotubes as lubricant additive in water[J]. Tribology Letters 25(3):247–253)

  28. Li XF, Yan H, Peng SX (2011) Colloidal Polystyrene-Carbon Nanotubes as Water-Based Lubricant Additive[J]. Advanced Materials Research 228–229:253–258

    Google Scholar 

Download references

Funding

This work was supported by Special Research Project in Shaanxi Province Department of Education (20JK0668); The Project National United Engineering Laboratory for Advanced Bearing Tribology (202106); Science and Technology on Diesel Engine Turbocharging Laboratory (6142212190104) and Innovation Capability Support Program of Shaanxi (2020KJXX-016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junde Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Zhang, G., Peng, R. et al. Thermosensitive PCEC hydrogel loaded with carbon nanotubes for slow-release lubrication effect. J Polym Res 28, 239 (2021). https://doi.org/10.1007/s10965-021-02610-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02610-1

Keywords

Navigation