Skip to main content
Log in

Investigation of the mechanical and electrical properties of SnS filled PVP/PVA polymeric composite blends

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In the current work, the mechanical and electrical properties of SnS filled PVP/PVA polymeric composite blends have been investigated. SnS (0 to 10.0 wt%) filled PVP/PVA (50/50) polymeric composite blends were prepared via solution casting method. A scanning electron microscope instrument was used to examine the surface morphology of the prepared composite blends. A dynamic mechanical analyzer (DMA) was utilized to investigate the mechanical properties of the prepared samples over a temperature range from 298 to 450 K. DMA measurements reveal that the storage modulus and stiffness of the neat film are doubled via SnS filling. Also, the obtained glass transition temperature (Tg) values of all SnS filled PVP/PVA polymeric composite blends are shifted to higher ones as compared with that of the neat blend. The electrical properties of the prepared samples are studied over the temperature range from 298 to 450 K. The dc electrical conductivity (σ) of the neat PVP/PVA polymeric blend is also enhanced by SnS filling. Moreover at any temperature, σ of the prepared PVP/PVA polymeric composite blend increases as the concentration of SnS is increased up to 10.0%. The activation energy of the prepared composite blends is determined. The prepared SnS filled PVP/PVA polymeric composite blends could actively play a great role in industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Badawi A, Alharthi SS, Mostafa NY, Althobaiti MG, Altalhi T (2019) Effect of carbon quantum dots on the optical and electrical properties of polyvinylidene fluoride polymer for optoelectronic applications. Appl Phys A 125(12):858

    Article  CAS  Google Scholar 

  2. Badawi A, Ahmed EM, Mostafa NY, Abdel-Wahab F, Alomairy SE (2017) Enhancement of the optical and mechanical properties of chitosan using Fe2O3 nanoparticles. J Mater Sci Mater Electron 28(15):10877–10884

    Article  CAS  Google Scholar 

  3. Zidan HM, Abdelrazek EM, Abdelghany AM, Tarabiah AE (2019) Characterization and some physical studies of PVA/PVP filled with MWCNTs. J Market Res 8(1):904–913

    CAS  Google Scholar 

  4. Badawi A (2015) Characterization of the optical and mechanical properties of CdSe QDs/PMMA nanocomposite films. J Mater Sci Mater Electron 26(6):3450–3457

    Article  CAS  Google Scholar 

  5. Badawi A, Alharthi SS (2021) Tailoring the photoluminescent and electrical properties of tin-doped ZnS@PVP polymeric composite films for LEDs applications. Superlattices Microstruct 151C:106838

    Article  CAS  Google Scholar 

  6. Badawi A (2021) Enhancement of the optical properties of PVP using Zn1-xSnxS for UV-region optical applications. Appl Phys A 127(1):51

    Article  CAS  Google Scholar 

  7. Issa SAM, Zakaly HMH, Pyshkina M, Mostafa MYA, Rashad M, Soliman TS (2021) Structure, optical, and radiation shielding properties of PVA–BaTiO3 nanocomposite films: An experimental investigation. Radiat Phys Chem 180:109281

    Article  CAS  Google Scholar 

  8. Badawi A (2020) Engineering the optical properties of PVA/PVP polymeric blend in situ using tin sulfide for optoelectronics. Appl Phys A 126(5):335

    Article  CAS  Google Scholar 

  9. Ahmed HT, Abdullah OG (2019) Preparation and composition optimization of PEO:MCpolymer blend films to enhance electrical conductivity. Polymers 11(5):853

    Article  PubMed Central  CAS  Google Scholar 

  10. Heiba ZK, Mohamed MB, Badawi A, Alhazime AA (2021) The role of Cd0.9Mg0.1S nanofillers on the structural, optical, and dielectric properties of PVA/CMC polymeric blend. Chemical Physics Letters 770:138460

  11. Saudi HA, Tekin HO, Zakaly HMH, Issa SAM, Susoy G, Zhukovsky M (2021) The impact of samarium (III) oxide on structural, optical and radiation shielding properties of thallium-borate glasses: Experimental and numerical investigation. Opt Mater 114:110948

    Article  CAS  Google Scholar 

  12. Badawi A, Alharthi SS, Assaedi H, Alharbi AN, Althobaiti MG (2021) Cd0.9Co0.1S nanostructures concentration study on the structural and optical properties of SWCNTs/PVA blend. Chemical Physics Letters 775:138701

  13. Alharthi SS, Alzahrani A, Razvi MAN, Badawi A, Althobaiti MG (2020) Spectroscopic and electrical properties of Ag2S/PVA nanocomposite films for visible-light optoelectronic devices. J Inorg Organomet Polym Mater 30(10):3878–3885

    Article  CAS  Google Scholar 

  14. Al-Baradi AM, Al-Shehri SF, Badawi A, Merazga A, Atta AA (2018) A study of optical, mechanical and electrical properties of poly(methacrylic acid)/TiO2 nanocomposite. Results in Physics 9:879–885

    Article  Google Scholar 

  15. Heiba ZK, Mohamed MB, Badawi A (2021) Structure, optical and electronic characteristics of iron-doped cadmium sulfide under nonambient atmosphere. Appl Phys A 127(3):166

    Article  CAS  Google Scholar 

  16. Alhazime AA (2020) Effect of Nano CuO Doping on Structural, Thermal and Optical Properties of PVA/PEG Blend. J Inorg Organomet Polym Mater 30(11):4459–4467

    Article  CAS  Google Scholar 

  17. Rajesh K, Crasta V, Rithin Kumar NB, Shetty G, Rekha PD (2019) Structural, optical, mechanical and dielectric properties of titanium dioxide doped PVA/PVP nanocomposite. Journal of Polymer Research 26(4):99

  18. Rahman MT, Asadul Hoque M, Rahman GT, Gafur MA, Khan, RA, Hossain MK, (2019) Study on the mechanical, electrical and optical properties of metal-oxide nanoparticles dispersed unsaturated polyester resin nanocomposites. Results in Physics 13:102264

  19. Bhajantri RF, Ravindrachary V, Poojary B, Ismayil B, Harisha A, Crasta V (2009) Studies on fluorescent PVA + PVP + MPDMAPP composite films. Polymer Engineering & Science 49(5):903–909

  20. Deepa KG, Nagaraju J (2014) Development of SnS quantum dot solar cells by SILAR method. Mater Sci Semicond Process 27:649–653

    Article  CAS  Google Scholar 

  21. Cao M, Wu C, Yao K, Jing J, Huang J, Cao M, Zhang J, Lai J, Ali O, Wang L, Shen Y (2018) Chemical bath deposition of single crystal SnS nanobelts on glass substrates. Mater Res Bull 104:244–249

    Article  CAS  Google Scholar 

  22. Tripathi AM, Mitra S (2014) Tin sulfide (SnS) nanorods: structural, optical and lithium storage property study. RSC Adv 4(20):10358–10366

    Article  CAS  Google Scholar 

  23. Badawi A (2021) Bandgap tuning of polyvinyl alcohol capped alloyed Sn1-xCuxS nanostructures for optoelectronic applications. J Crystal Growth 126091

  24. Niknia F, Jamali-Sheini F, Yousefi R, Cheraghizade M (2018) Effect of thickness on the optoelectronic properties of electrodeposited nanostructured SnS films. Opt Quant Electron 50(9):339

    Article  CAS  Google Scholar 

  25. Javed A, Qurat ul A, Bashir M (2018) Controlled growth, structure and optical properties of Fe-doped cubic π- SnS thin films. J Alloys Com 759:14–21

  26. Vidal J, Lany S, d’Avezac M, Zunger A, Zakutayev A, Francis J, Tate J (2012) Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS. Appl Phys Lett 100(3):032104

    Article  CAS  Google Scholar 

  27. Rana TR, Kim S, Kim J (2018) Existence of multiple phases and defect states of SnS absorber and its detrimental effect on efficiency of SnS solar cell. Curr Appl Phys 18(6):663–666

    Article  Google Scholar 

  28. Badawi A, Al Hosiny N (2015) Dynamic mechanical analysis of single walled carbon nanotubes/polymethyl methacrylate nanocomposite films. Chin. Phys. B 24(10):105101

  29. Sartale SD, Lokhande CD (2001) Preparation and characterization of nickel sulphide thin films using successive ionic layer adsorption and reaction (SILAR) method. Mater Chem Phys 72(1):101–104

    Article  CAS  Google Scholar 

  30. Brostow W, Lobland HEH, Narkis M (2011) The concept of materials brittleness and its applications. Polym Bull 67:1697–1707

    Article  CAS  Google Scholar 

  31. Badawi A, Alharthi SS (2020) Controlling the optical and mechanical properties of polyvinyl alcohol using Ag2S semiconductor for environmentally friendly applications. Mater Sci Semicond Process 116:105139

    Article  CAS  Google Scholar 

  32. Hone FG, Dejene FB, Koao LF (2020) Tailoring optical and electrical properties of ternary Pb1−xCoxS thin films synthesized from a combination of two complexing agents. Ind J Phy

  33. Amin GAM, Salam MHA-E (2014) Optical, dielectric and electrical properties of PVA doped with Sn nanoparticles. Materials Research Express 1(2):025024

    Article  CAS  Google Scholar 

  34. Faria R, Duncan JC, Brereton RG (2007) Dynamic mechanical analysis and chemometrics for polymer identification. Polym Testing 26(3):402–412

    Article  CAS  Google Scholar 

  35. Brostow W, Chiu R, Kalogeras IM, Vassilikou-Dova A (2008) Prediction of glass transition temperatures: Binary blends and copolymers. Mater Lett 62(17–18):3152–3155

    Article  CAS  Google Scholar 

  36. Rieger J (2001) The glass transition temperature Tg of polymers—Comparison of the values from differential thermal analysis (DTA, DSC) and dynamic mechanical measurements (torsion pendulum). Polym Testing 20(2):199–204

    Article  CAS  Google Scholar 

  37. Essabir H, Elkhaoulani A, Benmoussa K, Bouhfid R, Arrakhiz FZ, Qaiss A (2013) Dynamic mechanical thermal behavior analysis of doum fibers reinforced polypropylene composites. Mater Des 51:780–788

    Article  CAS  Google Scholar 

  38. Huang Y-L, Ma C-CM, Yuen S-M, Chuang C-Y, Kuan H-C, Chiang C-L, Wu S-Y (2011) Effect of maleic anhydride modified MWCNTs on the morphology and dynamic mechanical properties of its PMMA composites. Mater Chem Phys 129(3):1214–1220

    Article  CAS  Google Scholar 

  39. Sewda K, Maiti SN (2013) Dynamic mechanical properties of high density polyethylene and teak wood flour composites. Polym Bull 70:2657–2674

    Article  CAS  Google Scholar 

  40. Dixit M, Gupta S, Mathur V, Rathore KS, Sharma K, Saxena NS (2009) Study of glass transition temperature of PMMA and CdS-PMMA composite. Chalcogenide Letters 6(3):131–136

    CAS  Google Scholar 

  41. Sahooa NG, Ranab S, Chob JW, Li L, Chana SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867

    Article  CAS  Google Scholar 

  42. Montazeri A, Pourshamsian K, Riazian M (2012) Viscoelastic properties and determination of free volume fraction of multi-walled carbon nanotube/epoxy composite using dynamic mechanical thermal analysis. Mater Des 36:408–414

    Article  CAS  Google Scholar 

  43. Mathur V, Dixit M, Rathore KS, Saxena NS, Sharma KB (2011) Morphological and mechanical characterization of a PMMA/CdS nanocomposite. Front Chem Sci Eng 5(2):258–263

    Article  CAS  Google Scholar 

  44. Takeuchi K, Kamaguchi A, Nabeta M, Fujii S, Nakamura Y, Iida T (2007) Morphology and viscoelastic properties of poly(Vinyl Chloride)/ Poly(Vinyl Alcohol) Incompatible blends. Polymers and Polym Composi 15(5):371–377

  45. Dueramae I, Jubsilp C, Takeichi T, Rimdusit S (2014) High thermal and mechanical properties enhancement obtained in highly filled polybenzoxazine nanocomposites with fumed silica. Compos B Eng 56:197–206

    Article  CAS  Google Scholar 

  46. Sreekanth K, Siddaiah T, Gopal NO, Madhava Kumar Y, Ramu C  (2019) Optical and electrical conductivity studies of VO2+ doped polyvinyl pyrrolidone (PVP) polymer electrolytes. Journal of Science: Advanced Materials and Devices 4(2):230–236

  47. Abdelghany AM, Oraby AH, Farea MO (2019) Influence of green synthesized gold nanoparticles on the structural, optical, electrical and dielectric properties of (PVP/SA) blend. Phys B 560:162–173

    Article  CAS  Google Scholar 

  48. Ahad N, Saion E, Gharibshahi E (2012) Structural, thermal, and electrical properties of PVA-Sodium salicylate solid composite polymer electrolyte. J Nanomater 2012:857569

    Article  CAS  Google Scholar 

  49. Ravi M, Bhavani S, Kiran Kumar K, Narasimaha Rao VVR (2013) Investigations on electrical properties of PVP:KIO4 polymer electrolyte films. Solid State Sciences 19:85–93

  50. Watanabe M, Sanui K, Ogata N, Inoue F, Kobayashi T, Ohtaki Z (1984) Temperature dependence of ionic conductivity of crosslinked Poly(propylene oxide) films dissolving lithium salts and their interfacial charge transfer resistance in contact with lithium electrodes. Polym J 16(9):711–716

    Article  CAS  Google Scholar 

  51. Ramesh S, Yahaya AH, Arof AK (2002) Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ionics 152–153:291–294

    Article  Google Scholar 

  52. Sundaramahalingam K, Vanitha D, Nallamuthu N, Manikandan A, Muthuvinayagam M (2019) Electrical properties of lithium bromide poly ethylene oxide / poly vinyl pyrrolidone polymer blend elctrolyte. Phys B 553:120–126

    Article  CAS  Google Scholar 

  53. Al-Hosiny NM, Abdallah S, Moussa MAA, Badawi A (2013) Optical, thermophysical and electrical characterization of PMMA (CdSe QDs) composite films. J Polym Res 20(2):1–8

    Article  CAS  Google Scholar 

  54. Henaish AMA, Mostafa M, Salem BI, Zakaly HMH, Issa SAM, Weinstein IA, Hemeda OM (2020) Spectral, electrical, magnetic and radiation shielding studies of Mg-doped Ni–Cu–Zn nanoferrites. J Mater Sci: Mater Electron 31(22):20210–20222

    Google Scholar 

Download references

Acknowledgements

The Authors thank Taif University Researchers Supporting Project number (TURSP-2020/248), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Badawi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badawi, A., Alharthi, S.S., Alotaibi, A.A. et al. Investigation of the mechanical and electrical properties of SnS filled PVP/PVA polymeric composite blends. J Polym Res 28, 205 (2021). https://doi.org/10.1007/s10965-021-02569-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02569-z

Keywords

Navigation