Skip to main content
Log in

Galactopolymer architectures/functionalized graphene oxide nanocomposites for antimicrobial applications

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Methacryl-2,3,4,6-tetra-O-acetyl-D-galactopyranoside (MG) based linear (PMG-L), 3-armed (PMG-3A) and 4-armed (PMG-4A) galactopolymer architectures were produced by ATRP copper complexed process and the obtained polymer architectures were characterized by FT-IR and 1H- & 13C-NMR spectroscopic techniques. The weight percentages of pendant protected galactose moieties of the galactomacromolecular chains were in the range of 74.3-77.9 % and the molecular weights of the galactopolymers were in the orbit of 10595-13211 as calculated from 1H-NMR spectra. Further, graphene oxide (GO) was functionalized with 2-thiopheneethylamine (GO-T) and RGD peptide (GO-P) and their nanocomposites were prepared with the synthesized PMG-L, PMG-3A, and PMG-4A galactopolymers by solvent assisted–mixing method. The 4-armed nanocomposites exhibited 5-12 °C higher thermal stability compared to the neat galactopolymers. DSC studies of the neat galactopolymers and nanocomposites revealed that the PMG-3A nanocomposites with 1 wt% GO and modified GO showed higher glass transition temperature values (98-129 °C) compared to their neat galactopolymer (92 °C). FE-SEM analysis of nanocomposites revealed the dependence of polymer architecture and GO surface functionalities on the surface morphologies. The 4-armed polymer composites having 1 wt% of GO-P and GO-T showed the formation of relatively uniform spherical 150-200 nm nanoparticles. Antibacterial activities of the PMG-L, PMG-3A, and PMG-4A nanocomposites were evaluated against E. coli and compared with their neat galactopolymer architectures. The PMG-3A and PMG-4A galactopolymer nanocomposites exhibited considerably prominent zone of inhibition in contrast to the linear polymer, PMG-L nanocomposites and their neat galactopolymers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Santos MRE, Fonseca AC, Mendonça PV, Branco R, Serra AC, Morais PV, Coelho JFJ (2016) Recent developments in antimicrobial polymers: A review. Materials (Basel) 9(7):599

    Article  CAS  Google Scholar 

  2. Álvarez-Paino M, Muñoz-Bonilla A, Fernández-García M (2017) Antimicrobial polymers in the nano-world. Nanomaterials 7(2):48

    Google Scholar 

  3. Delfi M, Ghomi M, Zarrabi A, Mohammadinejad R, Taraghdari ZB, Ashrafizadeh M, Zare EN, Agarwal T, Padil VVT, Mokhtari B, Rossi F, Perale G, Sillanpaa M, Borzacchiello A, Kumar Maiti T, Makvandi P (2020) Functionalization of polymers and nanomaterials for biomedical applications: Antimicrobial platforms and drug carriers. Prosthesis 2(2):117–139

    Article  Google Scholar 

  4. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13(1):42–51

    Article  CAS  PubMed  Google Scholar 

  5. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74(3):417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Miura Y (2007) Synthesis and biological application of glycopolymers. J Polym Sci A Polym Chem 45(22):5031–5036

    Article  CAS  Google Scholar 

  7. Ladmiral V, Melia E, Haddleton DM, (2004) Synthetic glycopolymers: An overview. Eur Polym J 40(3):431–449

    Article  CAS  Google Scholar 

  8. Lundquist JJ, Toone EJ (2002) The cluster glycoside effect. Chem Rev 102(2):555–578

    Article  CAS  PubMed  Google Scholar 

  9. Verma AJ, Kennedy JF, Galgali P (2004) Synthetic polymers functionalized by carbohydrates: A review. Carbohydr Polym 56(4):429–445

    Article  CAS  Google Scholar 

  10. Mammen M, Choi SK, Whitesides GM (1998) Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed Engl 37(20):2754–2794

    Article  PubMed  Google Scholar 

  11. Palomino E (1994) ‘Carbohydrate handles’ as natural resources in drug delivery. Adv Drug Deliv Rev 13(3):311–323

    Article  CAS  Google Scholar 

  12. Gracia-Martin MG, Jimmenez-Hidalgo C, Al-Kass SSJ, Caraballo I, De Pez MV, Galibs JA (2000) Synthesis and characterization of some new homo- and co-poly(vinylsaccharides): Some preliminary studies as drug delivery. Polymer 41(3):821–826

    Article  Google Scholar 

  13. Keissling LL, Grim JC (2013) Glycopolymer probes of signal transduction. Chem Soc Rev 42(10):4476–4491

    Article  CAS  Google Scholar 

  14. Cho CS, Seo SJ, Park IK, Kim SH, Kim TH, Hoshiba T, Harada I, Akaike T (2006) Galactose-carrying polymers as extracellular matrices for liver tissue engineering. Biomaterials 27(4):576–585

    Article  CAS  PubMed  Google Scholar 

  15. Jelinek R, Kolusheva S (2004) Carbohydrate biosensors. Chem Rev 104(2):5987–6016

    Article  CAS  PubMed  Google Scholar 

  16. Trinadh M, Govindaraj K, Santosh V, Dhayal M, Sainath AVS (2016) Synthesis of PEO-based di-block glycopolymers at various pendant spacer lengths of glucose moiety and their in-vitro biocompatibility with MC3T3 osteoblast cells. Des Monomers Polym 19(1):24–33

    Article  CAS  Google Scholar 

  17. Pramudya I, Chung H (2019) Recent progress of glycopolymer synthesis for biomedical applications. Biomater Sci 7:4848-4872

  18. Ahmed M, Narain R (2013) Cell line dependent uptake and transfection efficiencies of PEI-anionic glycopolymer systems. Biomaterials 34(17):4368–4376

    Article  CAS  PubMed  Google Scholar 

  19. Zheng Y, Luo Y, Feng K, Zhang W, Chen G (2019) High throughput screening of glycopolymers: Balance between cytotoxicity and antibacterial properties. ACS Macro Lett 8(3):326–330

    Article  CAS  Google Scholar 

  20. Dicky P, Li Qun X, Zheng H, En-Tang K, Mary BC (2017) Increasing bacterial affinity and cytocompatibility with four-arm star glycopolymers and antimicrobial α-polylysine. Polym Chem 8(21):3364–3373

    Article  Google Scholar 

  21. Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490(7419):192–200

    Article  CAS  PubMed  Google Scholar 

  22. Krishna KV, Menard-Moyon C, Verma S, Bianco A (2013) Graphene-based nanomaterials for nanobiotechnology and biomedical applications. Nanomedicine (Lond) 8(10):1669–88

    Article  CAS  Google Scholar 

  23. Wu X, Tan S, Xing Y, Pu Q, Wu M, Zhao JX (2017) Graphene oxide as an efficient antimicrobial nanomaterial for eradicating multi-drug resistant bacteria in vitro and in vivo. Colloids Surf B 157:1–9

    Article  CAS  Google Scholar 

  24. Tudose M, Anghel EM, Culita DC, Somacescu S, Calderon-Moreno J, Tecuceanu V, Dumitrascu FD, Dracea O, Popa M, Marutescu L, Bleotu C, Curutiu C, Chifiriuc MC (2019) Covalent coupling of tuberculostatic agents and graphene oxide: A promising approach for enhancing and extending their antimicrobial applications. Appl Surf Sci 471:553–565

    Article  CAS  Google Scholar 

  25. Dhanasekar M, Jenefer V, Nambiar BR, Babu SG, Selvam SP, Neppolian B, Bhat SV (2018) Ambient light antimicrobial activity of reduced graphene oxide supported metal doped TiO2 nanoparticles and their PVA based polymer nanocomposite films. Mater Res Bull 97:238–243

    Article  CAS  Google Scholar 

  26. Whitehead KA, Vaidy M, Liauw CM, Brownson DAC, Ramalingam P, Kamieniak J, Rowley-Neale SJ, Tetlow LA, Wilson-Nieuwenhuis JST, Brown D, McBain AJ, Kulandaivel J, Banks CE (2017) Antimicrobial activity of graphene oxide-metal hybrids. Int Biodeterior Biodegradation 123:182–190

    Article  CAS  Google Scholar 

  27. Deokar AR, Nagvenkar AP, Kalt I, Shani L, Yeshurun Y, Gedanken A, Sarid R (2017) Graphene-based “Hot Plate” for the capture and destruction of the herpes simplex virus type 1. Bioconjug Chem 28(4):1115–1122

    Article  CAS  PubMed  Google Scholar 

  28. Shiyi Y, Kang S, Zhonghua L, Nan G, Yunpeng Z, Qin L, Zhicheng L, Lu C, Qigai H, Heyou H (2015) Antiviral activity of graphene oxide: How sharp edged structure and charge matter. ACS Appl Mater Interfaces 7(38):21571–21579

    Article  CAS  Google Scholar 

  29. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Campbell E, Hasan MT, Pho C, Callaghan K, Akkaraju GR, Naumov AV (2019) Graphene oxide as a multifunctional platform for intracellular delivery, imaging, and cancer sensing. Sci Rep 9:416. https://doi.org/10.1038/s41598-018-36617-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Junyong Z, Jing W, Jingwei H, Yatao Z, Jindum L, Bruggen BV (2017) Graphene-based antimicrobial polymeric membranes: A review. J Matter Chem A 5:6776–6793

    Article  Google Scholar 

  32. Yu L, Zhang Y, Zhang B, Liu J, Zhang H, Song C (2013) Preparation and characterization of HPEI-GO/PES ultrafiltration membrane with antifouling and antibacterial properties. J Membr Sci 447:452–462

    Article  CAS  Google Scholar 

  33. Iannazzo D, Pistone A, Salamo M, Galvagno S, Romeo R, Giofre SV, Branca C, Visalli G, Di Pietro A (2017) Graphene quantum dots for cancer targeted drug delivery. Int J Pharm 518(1–2):185–192

    Article  CAS  PubMed  Google Scholar 

  34. Zhao X, Yang L, Li X, Jia X, Liu L, Zeng J, Guo J, Liu P (2015) Functionalized graphene oxide nanoparticles for cancer cell-specific delivery of antitumor drug. Bioconjugate Chem 26(1):128–136

    Article  CAS  Google Scholar 

  35. Rao Z, Ge H, Liu L, Zhu C, Min L, Liu M, Fan L, Li D (2018) Carboxymethyl cellulose modified graphene oxide as a pH-sensitive drug delivery system. Int J Biol Macromol 107:1184–1192

    Article  CAS  PubMed  Google Scholar 

  36. Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130(33):10876–10877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen B, Liu M, Zhang L, Huang J, Yao J, Zhang Z (2011) Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector. J Matter Chem 21(21):7736–774

    Article  CAS  Google Scholar 

  38. Mo R, Jiang T, Sun W, Gu Z (2015) ATP-responsive DNA-graphene hybrid nanoaggregates for anticancer drug delivery. Biomaterials 50:67–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang YP, Hung CM, Hsu YC, Zhong CY, Wang WR, Chang CC, Lee MJ (2016) Suppression of breast cancer cell migration by small interfering RNA delivered by polyethylenimine-functionlized graphene oxide. Nanoscale Res Lett 11(1):247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hegab HM, ElMekawy A, Zou L, Mulchay D, Saint CP, Ginic-Markovic M (2016) The controversial antibacterial activity of graphene-based materials. Carbon 105:362–376

    Article  CAS  Google Scholar 

  41. Liu S, Zeng TH, Hofmann M, Burcombe E, Wei J, Jiang R, Kong J, Chen Y (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 5(9):6971–6980

    Article  CAS  PubMed  Google Scholar 

  42. Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4(10):5731–5736

    Article  CAS  PubMed  Google Scholar 

  43. Hu X, Zhou Q (2013) Health and ecosystem risks of graphene. Chem Rev 113(5):3815–3835

    Article  CAS  PubMed  Google Scholar 

  44. Joshi K, Mazumder B, Chattopadhyay P, Bora NS, Goyary D, Karmakar S (2019) Graphene family of nanomaterials: Reviewing advanced applications in drug delivery and medicine. Curr Drug Deliv 16(3):195–214

    Article  CAS  PubMed  Google Scholar 

  45. Lim HN, Huang NM, Loo CH (2012) Facile preparation of graphene-based chitosan films: Enhanced thermal, mechanical and antibacterial properties. J Non-Cryst Solids 358(3):525–530

    Article  CAS  Google Scholar 

  46. Williams DB, Lawton M (2010) Drying of organic solvents: Quantitative evaluation of the efficiency of several desiccants. J Org Chem 75(24):8351–8354

    Article  CAS  PubMed  Google Scholar 

  47. Rehberg CE, Dixon MB, Fisher CH (1969) The acrylation, aethacrylation, and acrylamidomethylation of cellulose. J Am Chem Soc 39:78–84

    Google Scholar 

  48. Rao NNM, Sharma S, Palodkar KK, Sadhu V, Sharma M, Sainath AVS (2020) Rationally designed curcumin laden glycopolymeric nanoparticles: Implications on cellular uptake and anticancer efficacy. J Appl Polym Sci 137(2):48954

    Article  CAS  Google Scholar 

  49. Sharma D, Rao NNM, Arasaretnam S, Sainath AVS, Dhayal M (2020) Functionalization of structurally diverse glycopolymers on graphene oxide surfaces and their quantification through fluorescence resonance energy transfer with fluorescein isothiocyanate. Colloid Polym Sci 298:365–375

    Article  CAS  Google Scholar 

  50. Karri SN, Nakka NMR, Sainath AVS, Palaniappan S (2019) Synthesis of homo/3- and 4-armed hydrophilic glycopolymers: To promote aniline to polyaniline-glycopolymers for fluorescence, electro active material, and electrostatic discharge applications. J Appl Polym Sci 136(41):48043

    Article  CAS  Google Scholar 

  51. Trinadh M, Govindaraj K, Rajasekhar T, Dhayal M, Sainath AVS (2015) Synthesis and characterization of poly(ethylene oxide)-based glycopolymers and their biocompatibility with osteoblast cells. Polym Int 64(6):795–803

    Article  CAS  Google Scholar 

  52. Yang H, Li F, Shan C, Han D, Zhang Q, Li Niu, Ivaska A (2009) Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem 19:4632–4638

    Article  CAS  Google Scholar 

  53. Jang J, Pham VH, Hur SH, Chung JS (2014) Dispersibility of reduced alkylamine-functionalized graphene oxides in organic solvents. J Colloid Interface Sci 424:62–66

    Article  CAS  PubMed  Google Scholar 

  54. Guo CX, Ng SR, Khoo SY, Zheng X, Chen P, Li CM (2012) RGD-peptide functionalized graphene biomimetic live-cell sensor for real-time detection of nitric oxide molecules. ACS Nano 6(8):6944–6951

    Article  CAS  PubMed  Google Scholar 

  55. Sadhu V, Nismy NA, Adikaari AADT, Henley SJ, Shkunov M, Silva SRP (2011) The incorporation of mono- and bi- functionalized multiwall carbon nanotubes in organic photovoltaic cells. Nanotechnology 22(26):265607

    Article  PubMed  CAS  Google Scholar 

  56. Diaz-Galvez KR, Teran-Saavedra NG, Burgara-Estrella AJ, Fernandez-Quiroz D, Silva-Campa E, Acosta-Elias M, Sarabia-Sainz HM, Pedroza-Montero MR, Sarabia-Sainz JA (2019) Specific capture of glycosylated graphene oxide by an asialoglycoprotein receptor: A strategic approach for liver-targeting. RSC Adv 9(18):9899–9906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Krishnamoorthy K, Navaneethaiyer U, Mohan R, Lee J (2012) Antibacterial activity of graphene nanosheets. Sci Adv Mater 4(11):1111–1117

    Article  CAS  Google Scholar 

  58. Li J, Zheng L, Zeng L, Zhang Y, Jiang L, Song J (2016) RGD peptide-grafted graphene oxide as a new biomimetic nanointerface for impedance-monitoring cell behaviors. J Nanomater. https://doi.org/10.1155/2016/2828512

Download references

Acknowledgements

TSK thanks CSIR-IICT for providing analytical facilities (IICT/Pubs./2020/268). AVSS and NNMR thank the network project CSC-0134 and UGC for financial support, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manu Sharma, Veera Sadhu or Annadanam V. Sesha Sainath.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2411 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, T.S., Rao, N.N.M., Rawat, R. et al. Galactopolymer architectures/functionalized graphene oxide nanocomposites for antimicrobial applications. J Polym Res 28, 196 (2021). https://doi.org/10.1007/s10965-021-02528-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02528-8

Keywords

Navigation