Skip to main content

Advertisement

Log in

Research on the viscous flow transition of styrene-isoprene-styrene triblock copolymer by Rheology

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The viscous flow transition of triblock copolymer styrene-isoprene-styrene (SIS5562) was studied by rheological methods. A broad loss factor (tan \(\delta\)) peak at 152.5 ℃ appeared on the dynamic viscoelastic spectrum under experimental conditions. Some similar peaks had been attributed to order-order transition (OOT) or order-disorder transition (ODT) in some research. In this system, the SAXS, time-temperature superposition (TTS) and Han plots proved that the microstructure of the SIS5562 did not undergo OOT or ODT transition in the temperature range. It may be the viscous flow transition as we supposed previously. The rheology study by capillary and rotation rheometer verified that the viscous flow transition temperature (Tf) was around 150 ℃.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Reference

  1. Bates FS, Fredrickson GH (1999) Block copolymers—designer soft materials. Phys Today 52:32–38

    Article  CAS  Google Scholar 

  2. Bates FS, Hillmyer MA, Lodge TP, Bates CM, Delaney KT, Fredrickson GH (2012) Multiblock polymers: panacea or pandora’s box? Science 336:434–440

    Article  CAS  PubMed  Google Scholar 

  3. Yang HW, Canich JAM, Licciardi GF (1996) Thermoplastic elastomers. US

  4. Bonart R (1979) Thermoplastic elastomers. Polymer 20:1389–1403

    Article  CAS  Google Scholar 

  5. Holden G, Bishop ET, Legge NR (2010) Thermoplastic elastomers. Journal of Polymer Ence Part C Polymer Symposia 26:37–57

    Article  Google Scholar 

  6. Bates FS, Fredrickson GH (1990) Block copolymer thermodynamics: theory and experiment. Annu Rev Phys Chem 41:525–557

    Article  CAS  PubMed  Google Scholar 

  7. Lee H-K, Zin W-C (2000) Phase diagrams for the blends of a styrene-butadiene diblock copolymer and a styrene-butadiene random copolymer: Theory. Macromolecules 33:2894–2900

    Article  CAS  Google Scholar 

  8. Zhu Y, Gido S, Iatrou H, Nikos H, Mays J (2003) Microphase separation of cyclic block copolymers of styrene and butadiene and of their corresponding linear triblock copolymers. Macromolecules 36:148–152

    Article  CAS  Google Scholar 

  9. Yamaguchi D, Hashimoto T, Han CD, Baek DM, Kim JK, Shi A-C (1997) Order−disorder transition, microdomain structure, and phase behavior in binary mixtures of low molecular weight polystyrene-block-polyisoprene copolymers. Macromolecules 30:5832–5842

    Article  CAS  Google Scholar 

  10. Wanakule NS, Panday A, Mullin SA, Gann E, Hexemer A, Balsara NP (2009) Ionic conductivity of block copolymer electrolytes in the vicinity of order−disorder and order−order transitions. Macromolecules 42:5642–5651

    Article  CAS  Google Scholar 

  11. Bates F, Rosedale J, Fredrickson G (1990) Fluctuation effects in a symmetric diblock copolymer near the order-disorder transition. J Chem Phys 92:6255–6270

    Article  CAS  Google Scholar 

  12. Ogawa T, Sakamoto N, Hashimoto T, Han CD, Baek DM (1996) Effect of volume fraction on the order− disorder transition in low molecular weight polystyrene-block-polyisoprene copolymers. 2. Order− disorder transition temperature determined by small-angle X-ray scattering. Macromolecules 29:2113–2123

    Article  CAS  Google Scholar 

  13. Hashimoto T, Ijichi Y, Fetters L (1988) Order–disorder transition of starblock copolymers. J Chem Phys 89:2463–2472

    Article  CAS  Google Scholar 

  14. Qin J, de Pablo JJ (2016) Ordering transition in salt-doped diblock copolymers. Macromolecules 49:3630–3638

    Article  CAS  Google Scholar 

  15. Winter HH, Scott DB, Gronski W, Okamoto S, Hashimoto T (1993) Ordering by flow near the disorder-order transition of a triblock copolymer styrene-isoprene-styrene. Macromolecules 26:7236–7244

    Article  CAS  Google Scholar 

  16. Krishnamoorti R, Modi MA, Tse MF, Wang HC (2000) Pathway and kinetics of cylinder-to-sphere order−order transition in block copolymers. Macromolecules 33:3810–3817

    Article  CAS  Google Scholar 

  17. Hahn H, Chakraborty AK, Das J, Pople JA, Balsara NP (2005) Order−disorder transitions in cross-linked block copolymer solids. Macromolecules 38:1277–1285

    Article  CAS  Google Scholar 

  18. Maher MJ, Jones SD, Zografos A, Xu J, Schibur HJ, Bates FS (2018) The order-disorder transition in graft block copolymers. Macromolecules 51:232–241

    Article  CAS  Google Scholar 

  19. Lee S-H, Char K, Kim G (2000) Order−disorder and order−order transitions in mixtures of highly asymmetric triblock copolymer and low molecular weight homopolymers. Macromolecules 33:7072–7083

    Article  CAS  Google Scholar 

  20. Leibler L (1980) Theory of microphase separation in block copolymers. Macromolecules 13:1602–1617

    Article  CAS  Google Scholar 

  21. Tanaka Y, Hasegawa H, Hashimoto T, Ribbe A, Sugiyama K, Hirao A, Nakahama S (1999) A study of three-phase structures in ABC triblock copolymers. Polym J 31:989–994

    Article  CAS  Google Scholar 

  22. Mathew I, George KE, Francis DJ (1994) Viscous and elastic behaviour of SEBS triblock copolymer. Die Angewandte Makromolekulare Chemie 217:51–59

    Article  CAS  Google Scholar 

  23. Lee P-C, Wang C-C, Chen C-Y (2020) Synthesis of high-vinyl isoprene and styrene triblock copolymers via anionic polymerization with difunctional t-BuLi initiator. Eur Polym J 124:109476

    Article  Google Scholar 

  24. Sakamoto N, Hashimoto T, Han CD, Kim D, Vaidya NY (1997) Effect of addition of a neutral solvent on the order−order and order−disorder transitions in a polystyrene-block-polyisoprene-block-polystyrene copolymer. Macromolecules 30:5321–5330

    Article  CAS  Google Scholar 

  25. Han CD, Baek DM, Kim JK (1990) Effect of microdomain structure on the order-disorder transition temperature of polystyrene-block-polyisoprene-block-polystyrene copolymers. Macromolecules 23:561–570

    Article  CAS  Google Scholar 

  26. Sakamoto N, Hashimoto T, Han CD, Kim D, Vaidya NY (1997) Order−order and order−disorder transitions in a polystyrene-block-polyisoprene-block-polystyrene copolymer. Macromolecules 30:1621–1632

    Article  CAS  Google Scholar 

  27. Ferri D, Canetti M (2006) Spurt and melt flow distorsions of linear styrene-isoprene-styrene triblock copolymers. J Rheol 50:611–624

    Article  CAS  Google Scholar 

  28. Han H, Tian G, Gao Q, Hu H, Zhao J, Li J (2020) Wall slip of styrene-isoprene-styrene (SIS) triblock copolymer induced by micro elastic phase. Polymer 209:122990

    Article  CAS  Google Scholar 

  29. Leibler Ludwik (1980) Theory of microphase separation in block copolymers. J Dalian Inst Tech 13:1602–1617

    CAS  Google Scholar 

  30. Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77:3701–3707

    Article  CAS  Google Scholar 

  31. Wang M-J, Lu SX, Mahmud K (2000) Carbon–silica dual-phase filler, a new-generation reinforcing agent for rubber. Part VI. Time–temperature superposition of dynamic properties of carbon–silica-dual-phase-filler-filled vulcanizates. J Polym Sci B Polym Phys 38:1240–1249

    Article  CAS  Google Scholar 

  32. Mahdavi R, Goodarzi V, Ali Khonakdar H, Hassan Jafari S, Reza Saeb M, Shojaei S (2018) Experimental analysis and prediction of viscoelastic creep properties of PP/EVA/LDH nanocomposites using master curves based on time–temperature superposition. J Appl Polym Sci 135:46725

    Article  Google Scholar 

  33. Collins DA, Yakacki CM, Lightbody D, Patel RR, Frick CP (2016) Shape-memory behavior of high-strength amorphous thermoplastic poly(para-phenylene). J Appl Polym Sci 133:42903

    Article  Google Scholar 

  34. Vaidyanathan TK, Vaidyanathan J, Cherian Z (2003) Extended creep behavior of dental composites using time–temperature superposition principle. Dent Mater 19:46–53

    Article  CAS  PubMed  Google Scholar 

  35. Zhang T, Zhao Y, Zhang B (2018) A method based on the time–temperature superposition principle to predict pressurization time in compression molding. J Appl Polym Sci 135:46664

    Article  Google Scholar 

  36. Nakano T (2013) Applicability condition of time–temperature superposition principle (TTSP) to a multi-phase system. Mech Time-Depend Mater 17:439–447

    Article  Google Scholar 

  37. Jamarani R, Erythropel HC, Burkat D, Nicell JA, Leask RL, Maric M (2017) Rheology of green plasticizer/poly(vinyl chloride) blends via time-temperature superposition. Processes 5:43

    Article  Google Scholar 

  38. Vananroye A, Leen P, Van Puyvelde P, Clasen C (2011) TTS in LAOS: validation of time-temperature superposition under large amplitude oscillatory shear. Rheologica Acta 50:795–807

    Article  CAS  Google Scholar 

  39. Dealy J, Plazek D (2009) Time-temperature superposition-a users guide. Rheol Bull 78:16–31

    Google Scholar 

  40. Naya S, Meneses A, Tarrío-Saavedra J, Artiaga R, López-Beceiro J, Gracia-Fernández C (2013) New method for estimating shift factors in time–temperature superposition models. J Therm Anal Calorim 113:453–460

    Article  CAS  Google Scholar 

  41. Bae J-E, Cho KS, Seo KH, Kang D-G (2011) Application of geometric algorithm of time-temperature superposition to linear viscoelasticity of rubber compounds. Korea-Australia Rheology Journal 23:81–87

    Article  Google Scholar 

  42. Chronakis IS, Doublier J-L, Piculell L (2000) Viscoelastic properties for kappa- and iota-carrageenan in aqueous NaI from the liquid-like to the solid-like behaviour. Int J Biol Macromol 28:1–14

    Article  CAS  PubMed  Google Scholar 

  43. Oroian M, Amariei S, Escriche I, Gutt G (2013) A viscoelastic model for honeys using the time-temperature superposition principle (TTSP). Food Bioprocess Technol  6:2251–2260

    Article  Google Scholar 

  44. Tsuji T, Mochizuki K, Okada K, Hayashi Y, Obata Y, Takayama K, Onuki Y (2019) Time–temperature superposition principle for the kinetic analysis of destabilization of pharmaceutical emulsions. Int J Pharm 563:406–412

    Article  CAS  PubMed  Google Scholar 

  45. Kossuth MB, Morse DC, Bates FS (1999) Viscoelastic behavior of cubic phases in block copolymer melts. J Rheol  43:167–196

    Article  CAS  Google Scholar 

  46. Hadjichristidis N, Pispas S, Floudas G (2003) Viscoelastic properties of block copolymers. John Wiley & Sons, Ltd

  47. Foerster S, Khandpur AK, Zhao J, Bates FS, Hamley IW, Ryan AJ, Bras W (1994) Complex phase behavior of polyisoprene-polystyrene diblock copolymers near the order-disorder transition. Macromolecules 27:6922–6935

    Article  CAS  Google Scholar 

  48. Khandpur AK, Foerster S, Bates FS, Hamley IW, Ryan AJ, Bras W, Almdal K, Mortensen K (1995) Polyisoprene-polystyrene diblock copolymer phase diagram near the order-disorder transition. Macromolecules 28:8796–8806

    Article  CAS  Google Scholar 

  49. Han CD, Baek DM, Kim JK, Ogawa T, Sakamoto N, Hashimoto T (1995) Effect of volume fraction on the order-disorder transition in low molecular weight polystyrene-block-polyisoprene copolymers. 1. order-disorder transition temperature determined by rheological measurements. Macromolecules 28:5043–5062

    Article  CAS  Google Scholar 

  50. Han CD, Kim J, Kim JK (1989) Determination of the order-disorder transition temperature of block copolymers. Macromolecules 22:383–394

    Article  CAS  Google Scholar 

  51. Han CD, Kim J (1987) Rheological technique for determining the order–disorder transition of block copolymers. J Polym Sci B Polym Phys 25:1741–1764

    Article  CAS  Google Scholar 

  52. Han CD, Kim JK (1989) Molecular theory for the viscoelasticity of compatible polymer mixtures. 2. Tube model with reptation and constraint release contributions. Macromolecules 22:4292–4302

    Article  CAS  Google Scholar 

  53. Dae Han C, Kim JK (1993) On the use of time-temperature superposition in multicomponent/multiphase polymer systems. Polymer 34:2533–2539

    Article  Google Scholar 

  54. Huggins ML (1961) Viscoelastic Properties of Polymers. J Am Chem Soc  83:4110–4111

    Article  Google Scholar 

  55. Hoffman EJ (1972) Viscoelastic Transition. J Eng Ind 94:732–737

    Article  Google Scholar 

  56. Faerber GL, Kim SW, Eyring H (1970) Viscous flow and glass transition temperature of some hydrocarbons. J Phys Chem 74:3510–3518 

    Article  CAS  Google Scholar 

  57. Li Y, Liu X, Zhuang X, Jin X, Liu Q (2016) Rheological behavior and spinnability of ethylamine hydroxyethyl chitosan/cellulose co-solution in N-methylmorpholine-N-oxide system. Fibers and Polymers 17:778–788

    Article  CAS  Google Scholar 

  58. Drabek J, Zatloukal M, Martyn M (2018) Effect of molecular weight on secondary Newtonian plateau at high shear rates for linear isotactic melt blown polypropylenes. J Non-Newtonian Fluid Mech  251:107–118

    Article  CAS  Google Scholar 

  59. Yanovsky Y (1993) Polymer Rheology: Theory and Practice

  60. Zheng Q, Du M, Yang B, Wu G (2001) Relationship between dynamic rheological behavior and phase separation of poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) blends. Polymer 42:5743–5747

    Article  CAS  Google Scholar 

  61. Zheng Q, Zhang XW, Pan Y, Yi XS (2002) Polystyrene/Sn–Pb alloy blends. I. Dynamic rheological behavior. J Appl Polym Sci 86:3166–3172

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Natural Science Foundation of Shandong Province (ZR201807060363, Nos.2017GGX20132).

Funding

The Opening Project of State Key Laboratory of Polymer Materials Engineering (Sichuan University) (Grant No. sklpme2020-4-04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junyu Li or Haiqing Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Han, H., Chi, H. et al. Research on the viscous flow transition of styrene-isoprene-styrene triblock copolymer by Rheology. J Polym Res 28, 160 (2021). https://doi.org/10.1007/s10965-021-02521-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02521-1

Keywords

Navigation