Skip to main content
Log in

Effect of nickel phyllosilicate on the morphological structure, thermal properties and wear resistance of epoxy nanocomposites

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

A Correction to this article was published on 27 July 2022

This article has been updated

Abstract

To improve the comprehensive properties of epoxy resin (EP), the lamellar nanofiller of nickel phyllosilicate (Ni-PS) was first synthesized hydrothermally and EP/Ni-PS nanocomposites were prepared via a solution-mixing process. The effect of Ni-PS content on the morphological structure, curing behavior, thermal stability, flammability as well as the tribological property under the dry sliding conditions of the nanocomposites were investigated carefully. Various characterizations have identified that the as-synthesized Ni-PS is characterized by good crystals and excellent thermal stability. The adequate Ni-PS could disperse homogeneously in the EP matrix, depicting the positive influences on the curing behavior and thermal stability at high temperatures. The incorporation of Ni-PS also increases the limited oxygen index and presents good suppression on the fire spreading for the nanocomposites; however, all the samples fail to pass any ratings of UL-94. By contrast, such inorganic filler depicts an exciting improvement in the tribological responses, showing both decreased coefficient of friction and specific wear rate for EP nanocomposites when compared to pure EP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

References

  1. Liu S, Chevali VS, Xu Z, Hui D, Wang H (2018) A review of extending performance of epoxy resins using carbon nanomaterials. Compos Part B 136:197–214

    Article  CAS  Google Scholar 

  2. Venkatesan P, Palaniswamy N, Rajagopal K (2006) Corrosion performance of coated reinforcing bars embedded in concrete and exposed to natural marine environment. Progress in Organic Coatings 56(1):8–12

    Article  CAS  Google Scholar 

  3. Wan Y, Chen G, Raman S, Xin J, Li Q, Huang Y, Wang Y, Luo H (2006) Friction and wear behavior of three-dimensional braided carbon fiber/epoxy composites under dry sliding conditions. Wear 260(9–10):933–941

    Article  CAS  Google Scholar 

  4. Baptista R, Mendão A, Rodrigues F, Figueiredo-Pina C, Guedes M, Marat-Mendes R (2016) Effect of high graphite filler contents on the mechanical and tribological failure behavior of epoxy matrix composites. Theor Appl Fract Mech 85:113–124

    Article  CAS  Google Scholar 

  5. Lavoratti A, Zattera AJ, Amico SC (2019) Mechanical and dynamic-mechanical properties of silanized graphene oxide/epoxy composites. J Polym Res 26(6):1–10

    Article  CAS  Google Scholar 

  6. Oladele IO, Akinwekomi AD, Agbabiaka OG, Oladejo MO (2018) Influence of biodegradation on the tensile and wear resistance properties of bio-derived CaCO3/epoxy composites. J Polym Res 26(1):16

  7. Kamran-Pirzaman A, Rostamian Y, Babatabar S (2020) Surface improvement effect of silica nanoparticles on epoxy nanocomposites mechanical and physical properties, and curing kinetic. J Polym Res 27(1):14

    Article  CAS  Google Scholar 

  8. Barrena M, De Salazar JG, Soria A, Cañas R (2014) Improved of the wear resistance of carbon nanofiber/epoxy nanocomposite by a surface functionalization of the reinforcement. Appl Surf Sci 289:124–128

    Article  CAS  Google Scholar 

  9. Kumar R, Anand A (2018) Dry sliding friction and wear behavior of ramie fiber reinforced epoxy composites. Materials Research Express 6(1):015309

    Article  CAS  Google Scholar 

  10. Pathak AK, Garg H, Singh M, Yokozeki T, Dhakate SR (2019) Enhanced interfacial properties of graphene oxide incorporated carbon fiber reinforced epoxy nanocomposite: a systematic thermal properties investigation. J Polym Res 26(2):1–13

    Article  CAS  Google Scholar 

  11. Irzhak VI, Dzhardimalieva GI, Uflyand IE (2019) Structure and properties of epoxy polymer nanocomposites reinforced with carbon nanotubes. J Polym Res 26(9):27

    Article  CAS  Google Scholar 

  12. Zhang H, Wang L, Zhou A, Shen C, Dai Y, Liu F, Chen J, Li P, Hu Q (2016) Effects of 2-D transition metal carbide Ti2CTx on properties of epoxy composites. RSC Adv 6(90):87341–87352

    Article  CAS  Google Scholar 

  13. Ekrem M, Düzcükoğlu H, Şenyurt MA, Şahin ÖS, Avcı A (2018) Friction and wear performance of epoxy resin reinforced with boron nitride nanoplatelets. J Tribol 140(2):022001

    Article  CAS  Google Scholar 

  14. Gupta S, Hammann T, Johnson R, Riyad M (2015) Tribological behavior of novel Ti3SiC2 (natural nanolaminates)-reinforced epoxy composites during dry sliding. Tribol Trans 58(3):560–566

    Article  CAS  Google Scholar 

  15. Mohan T, Kanny K (2017) Tribological studies of nanoclay filled epoxy hybrid laminates. Tribol Trans 60(4):681–692

    Article  CAS  Google Scholar 

  16. Sodeifian G, Nikooamal HR, Yousefi AA (2012) Molecular dynamics study of epoxy/clay nanocomposites: rheology and molecular confinement. J Polym Res 19(6):12

    Article  CAS  Google Scholar 

  17. Song J, Dai Z, Li J, Zhao H, Wang L (2019) Silane coupling agent modified BN-OH as reinforcing filler for epoxy nanocomposite. High Performance Polymers 31(1):116–123

    Article  CAS  Google Scholar 

  18. Liu S, Yan H, Fang Z, Guo Z, Wang H (2014) Effect of graphene nanosheets and layered double hydroxides on the flame retardancy and thermal degradation of epoxy resin. RSC Adv 4(36):18652–18659

    Article  CAS  Google Scholar 

  19. Husamelden E, Fan H (2019) Fluorinated functionalization of graphene oxide and its role as a reinforcement in epoxy composites. J Polym Res 26(2):42

    Article  CAS  Google Scholar 

  20. Burattin P, Che M, Louis C (1997) Characterization of the Ni(II) phase formed on silica upon deposition-precipitation. J Phys Chem B 101(36):7060–7074

    Article  CAS  Google Scholar 

  21. Burattin P, Che M, Louis C (1998) Molecular approach to the mechanism of deposition-precipitation of the Ni (II) phase on silica. J Phys Chem B 102(15):2722–2732

    Article  CAS  Google Scholar 

  22. Bian Z, Kawi S (2020) Preparation, characterization and catalytic application of phyllosilicate: a review. Catal Today 339:3–23

    Article  CAS  Google Scholar 

  23. Sivaiah MV, Petit S, Beaufort MF, Eyidi D, Barrault J, Batiot-Dupeyrat C, Valange S (2011) Nickel based catalysts derived from hydrothermally synthesized 1:1 and 2:1 phyllosilicates as precursors for carbon dioxide reforming of methane. Microporous Mesoporous Mater 140(1–3):69–80

    Article  CAS  Google Scholar 

  24. Fukushima Y, Tani M (1996) Synthesis of 2:1 type 3-(methacryloxy) propyl magnesium (nickel) phyllosilicate. Bull Chem Soc Jpn 69(12):3667–3671

    Article  CAS  Google Scholar 

  25. da Fonseca MG, Silva CR, Barone JS, Airoldi C (2000) Layered hybrid nickel phyllosilicates and reactivity of the gallery space. J Mater Chem 10(3):789–795

    Article  Google Scholar 

  26. Ohtsuka K, Koga J, Suda M, Ono M (1989) Fabrication of metal-layer (nickel) silicate microcomposite particles by a surface-nucleated precipitation route. J Am Ceram Soc 72(10):1924–1930

    Article  CAS  Google Scholar 

  27. Gérard P, Herbillon A (1983) Infrared studies of Ni-bearing clay minerals of the kerolite-pimelite series. Clay Clay Miner 31(2):143–151

    Article  Google Scholar 

  28. Kermarec M, Carriat J, Burattin P, Che M, Decarreau A (1994) FTIR identification of the supported phases produced in the preparation of silica-supported nickel catalysts. J Phys Chem 98(46):12008–12017

    Article  Google Scholar 

  29. Chen X, Wang L, Shi J, Shi H, Liu Y (2010) Effect of barium sulfate nanoparticles on mechanical properties and crystallization behaviour of HDPE. Polym Polym Compos 18(3):145–152

    Google Scholar 

  30. Li A, Li W, Ling Y, Gan W, Brady MA, Wang C (2016) Effects of silica-coated carbon nanotubes on the curing behavior and properties of epoxy composites. RSC Adv 6(28):23318–23326

    Article  CAS  Google Scholar 

  31. Zhou T, Wang X, Liu X, Xiong D (2009) Influence of multi-walled carbon nanotubes on the cure behavior of epoxy-imidazole system. Carbon 47(4):1112–1118

    Article  CAS  Google Scholar 

  32. Tao K, Yang S, Grunlan JC, Kim YS, Dang B, Deng Y, Thomas RL, Wilson BL, Wei X (2006) Effects of carbon nanotube fillers on the curing processes of epoxy resin-based composites. J Appl Polym Sci 102(6):5248–5254

    Article  CAS  Google Scholar 

  33. Singh AK, Panda BP, Mohanty S, Nayak SK, Gupta MK (2017) Study on metal decorated oxidized multiwalled carbon nanotube (MWCNT)-epoxy adhesive for thermal conductivity applications. J Mater Sci Mater Electron 28(12):8908–8920

    Article  CAS  Google Scholar 

  34. Sahoo SK, Mohanty S, Nayak SK (2015) A study on effect of organo modified clay on curing behavior and thermo-physical properties of epoxy methyl ester based epoxy nanocomposite. Thermochim Acta 614:163–170

    Article  CAS  Google Scholar 

  35. Shanmugharaj AM, Ryu SH (2012) Study on the effect of aminosilane functionalized nanoclay on the curing kinetics of epoxy nanocomposites. Thermochim Acta 546:16–23

    Article  CAS  Google Scholar 

  36. Liu Y-F, Zhao M, Shen S-G, Gao J-G (1998) Curing kinetics of tetrabromo-bisphenol-a epoxy resin with diaminodiphenyl methane. Acta Phys -Chim Sin 14(10):927–931

    Article  CAS  Google Scholar 

  37. Gillham JK (1986) Formation and properties of thermosetting and high Tg polymeric materials. Polym Eng Sci 26(20):1429–1433

    Article  CAS  Google Scholar 

  38. Minh HN, Chinh NT, Van Thanh TT, Hoang T (2019) Ternary nanocomposites based on epoxy, modified silica, and tetrabutyl titanate: Morphology, characteristics, and kinetics of the curing process. J Appl Polym Sci 136(18):47412

  39. Neǐman MB, Kovarskaya BM, Golubenkova LI, Strizhkova AS, Levantovskaya II, Akutin MS (1962) The thermal degradation of some epoxy resins. J Polym Sci 56(164):383–389

  40. Jumahat A, Soutis C, Jones F, Hodzic A (2010) Effect of silica nanoparticles on compressive properties of an epoxy polymer. J Mater Sci 45(21):5973–5983

    Article  CAS  Google Scholar 

  41. Zhang X, Wu Y, Chen X, Wen H, Xiao S (2017) Theoretical study on decomposition mechanism of insulating epoxy resin cured by anhydride. Polymers 9(8):341

    Article  PubMed Central  CAS  Google Scholar 

  42. Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43(16):6515–6530

    Article  CAS  Google Scholar 

  43. Martin-Gallego M, Bernal M, Hernandez M, Verdejo R, López-Manchado MA (2013) Comparison of filler percolation and mechanical properties in graphene and carbon nanotubes filled epoxy nanocomposites. Eur Polym J 49(6):1347–1353

    Article  CAS  Google Scholar 

  44. Guo W, Wang X, Pan Y, Cai W, Xing W, Song L, Hu Y (2019) Polyaniline-coupled graphene/nickel hydroxide nanohybrids as flame retardant and smoke suppressant for epoxy composites. Polym Adv Technol 30:1959–1967

    Article  CAS  Google Scholar 

  45. Li Z, Liu Z, Dufosse F, Yan L, Wang D-Y (2018) Interfacial engineering of layered double hydroxide toward epoxy resin with improved fire safety and mechanical property. Compos Part B 152:336–346

    Article  CAS  Google Scholar 

  46. Li Z, Lira SIM, Zhang L, Expósito DF, Heeralal VB, Wang D-Y (2018) Bio-inspired engineering of boron nitride with iron-derived nanocatalyst toward enhanced fire retardancy of epoxy resin. Polym Degrad Stab 157:119–130

    Article  CAS  Google Scholar 

  47. Wang Y, Zhang J (2012) Influences of specimen size and heating mode on the ignitability of polymeric materials in typical small-scale fire test conditions. Fire and Materials 36(3):231–240

    Article  CAS  Google Scholar 

  48. Nosonovsky M, Mortazavi V (2018) Friction-induced vibrations and self-organization: mechanics and non-equilibrium thermodynamics of sliding contact1st edn. CSC Press, USA, Boca Raton

    Google Scholar 

  49. Zhao Z, Ji J (2014) Synthesis and tribological behaviors of epoxy/phosphazene-microspheres coatings under dry sliding condition. Adv Eng Mater 16(8):988–995

    Article  CAS  Google Scholar 

  50. Yu J, Zhao W, Wu Y, Wang D, Feng R (2018) Tribological properties of epoxy composite coatings reinforced with functionalized C-BN and H-BN nanofillers. Appl Surf Sci 434:1311–1320

    Article  CAS  Google Scholar 

  51. Pawlak Z, Kaldonski T, Pai R, Bayraktare E, Oloyede A (2009) A comparative study on the tribological behaviour of hexagonal boron nitride (h-BN) as lubricating micro-particles - an additive in porous sliding bearings for a car clutch. Wear 267(5):1198–1202

    Article  CAS  Google Scholar 

  52. Miyake S, Watanabe S, Murakawa M, Kaneko R, Miyato T (1992) Tribological study of cubic boron nitride film. Thin Solid Films 212(1–2):262–266

    Article  CAS  Google Scholar 

  53. Dasari A, Yu Z-Z, Mai Y-W (2009) Fundamental aspects and recent progress on wear/scratch damage in polymer nanocomposites. Materials Science and Engineering: R: Reports 63(2):31–80

    Article  CAS  Google Scholar 

  54. Luo Y, Rong MZ, Zhang MQ (2005) Covalently connecting nanoparticles with epoxy matrix and its effect on the improvement of tribological performance of the composites. Polym Polym Compos 13(3):245–252

    CAS  Google Scholar 

  55. Lorenz P, Finster J, Wendt G, Salyn JV, Žumadilov EK, Nefedov VI (1979) Esca investigations of some NiO/SiO2 and NiO-Al2O3/SiO2 catalysts. J Electron Spectrosc Relat Phenom 16(3):267–276

  56. Nguyen TP, Lefrant S (1989) XPS study of SiO thin films and SiO-metal interfaces. J Phys Condens Matter 1(31):5197–5204

    Article  CAS  Google Scholar 

  57. Gray RC, Carver JC, Hercules DM (1976) An ESCA study of organosilicon compounds. J Electron Spectrosc Relat Phenom 8(5):343–357

    Article  CAS  Google Scholar 

  58. Tan BJ, Klabunde KJ, Sherwood PMA (1990) X-ray photoelectron spectroscopy studies of solvated metal atom dispersed catalysts. Monometallic iron and bimetallic iron-cobalt particles on alumina. Chem Mater 2(2):186–191

    Article  CAS  Google Scholar 

  59. Mathieu HJ, Landolt D (1986) An investigation of thin oxide films thermally grown in situ on Fe24Cr and Fe24Cr11Mo by auger electron spectroscopy and X-ray photoelectron spectroscopy. Corros Sci 26(7):547–559

  60. Hawn DD, DeKoven BM (1987) Deconvolution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides. Surf Interface Anal 10(2–3):63–74

    Article  CAS  Google Scholar 

  61. Mansour AN (1994) Characterization of NiO by XPS. Surface Science Spectra 3(3):231–238

    Article  CAS  Google Scholar 

  62. McIntyre NS, Cook MG (1975) X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper. Anal Chem 47(13):2208–2213

    Article  CAS  Google Scholar 

  63. Lian K, Thorpe SJ, Kirk DW (1992) The electrocatalytic activity of amorphous and crystalline Ni-Co alloys on the oxygen evolution reaction. Electrochim Acta 37(1):169–175

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (51775001), Anhui Provincial Natural Science Foundation (1908085 J20), University Synergy Innovation Program of Anhui Province (GXXT-2019-027) and the Leading Talents Project in Colleges and Universities of Anhui Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-nian Yang or Shi-bin Nie.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Jn., Li, Zy., Xu, Yx. et al. Effect of nickel phyllosilicate on the morphological structure, thermal properties and wear resistance of epoxy nanocomposites. J Polym Res 27, 274 (2020). https://doi.org/10.1007/s10965-020-02250-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02250-x

Keywords

Navigation