Skip to main content
Log in

Blends of synthetic plastic-derived polypeptide with Hydroxypropylmethylcellulose and polyvinyl alcohol: unraveling the specific interaction parameters, morphology and thermal stability of the polymers couple

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The medleys of the plastic-derived polypeptide with commercially available polymers believably the suitable candidate for pharmaceutical and biomedical importance. The current research is focussed on the synthesis of a novel plastic-mimetic polypeptide (PLP), poly(IPAVG) by the solution phase method (where I, P, A, V, and G represent Isoleucine, Proline, Alanine, Valine, and Glycine, respectively). The miscibility attributes of PLP/polyvinyl alcohol (PVA) and PLP/hydroxypropylmethylcellulose (HPMC) blends were examined by viscometry and by other advanced analytical tools for different weight proportions. It is shown by the viscometry that the PLP/HPMC and PLP/PVA form an immiscible blend system at 10 οC and further, the FTIR spectra of poly (IPAVG) /HPMC and poly (IPAVG) /PVA blend membranes manifest the lack of intermolecular interactions. DSC results proved the dual Tg for one blend proportion and lower Tg values for all other blend systems. The thermal property of the blends with different compositions was evaluated by thermogravimetric analysis (TGA). The TGA results showed that the blends possess inferior thermal stability to the native ones. The surface morphology was analyzed by SEM indicated the heterogeneity and X-ray diffraction (XRD) revealed the absence of any change in crystallinity advocated the immiscibility of the blends. Further, we ventured to prepare the non-woven fabrics from the solutions of 1–10 wt% concentrations at the voltages within 20–30 kV by electrospinning. The droplet formed at the spinneret failed to reach the collector plate, and consequently, no films developed for the collector device.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Urry DW (1997) Physical chemistry of biological free energy transduction as demonstrated by elastic protein-based polymers†. J Phys Chem B 101:11007–11028

    Article  CAS  Google Scholar 

  2. Meyer DE, Chilkoti A (2002) Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: examples from the elastin-like polypeptide system. Biomacromolecules 3:357–367

    Article  CAS  Google Scholar 

  3. Urry DW, Pattanaik A, Jie X, Woods CT, McPherson DT, Parker TM (1998) Elastic protein-based polymers in soft tissue augmentation and generation. J Biomater Sci Polym Ed 9:1015–1048

    Article  CAS  Google Scholar 

  4. Frandsen JL, Ghandehari H (2012) Recombinant protein-based polymers for advanced drug delivery. Chem Soc Rev 41:2696–2706

    Article  CAS  Google Scholar 

  5. Urry DW, Luan CH, Peng SO, Parker TM, Gowda DC (1991) MRS proceedings 255–411

  6. Wright ER, Conticello VP (2002) Self-assembly of block copolymers derived from elastin-mimetic polypeptide sequences. Adv Drug Del Rev 54:1057–1073

    Article  CAS  Google Scholar 

  7. Qi X, Jiang Y, Li X, Zhang Z, Wu Z (2015) J Appl Polym Sci 132:42059

    Google Scholar 

  8. Barik A, Patnaik T, Parhi P, Swain SK, Dey RK (2017) Polym Bull 74:3467–3485

    Article  CAS  Google Scholar 

  9. Arik N, Inan A, Demirci EAIF, Karaman O, Ercan UK, Horzum N (2019) Modification of electrospun PVA/PAA scaffolds by cold atmospheric plasma: alignment, antibacterial activity, and biocompatibility. Polym Bull 76:797–812

    Article  CAS  Google Scholar 

  10. Kim J, Lee CM (2017) Wound healing potential of a polyvinyl alcohol-blended pectin hydrogel containing Hippophae rahmnoides L. extract in a rat model. Int J Biolog Macromol 99:586–593

    Article  CAS  Google Scholar 

  11. Sionkowska A (2011) Current research on the blends of natural and synthetic polymers as new biomaterials: review. Prog Polym Sci 36:1254–1276

    Article  CAS  Google Scholar 

  12. Lewandowska K (2005) The miscibility of poly(vinyl alcohol)/poly(N-vinylpyrrolidone) blends investigated in dilute solutions and solids. Eur Polym J 41:55–64

    Article  CAS  Google Scholar 

  13. Patel M (2004) Viscoelastic properties of polystyrene using dynamic rheometry. Polym Test 23:107–112

    Article  CAS  Google Scholar 

  14. Cabanelas JC, Serrano B, Baselga J (2005) Development of cocontinuous morphologies in initially heterogeneous thermosets blended with poly(methyl methacrylate). Macromolecules 38:961–970

    Article  CAS  Google Scholar 

  15. Nanjundaswamy GS, Mahesh B, Channe Gowda D (2018) Polym Int 67:1511–1522

    Article  Google Scholar 

  16. Wanchoo RK, Sharma PK (2003) Viscometric study on the compatibility of some water-soluble polymer–polymer mixtures. Eur Polym J 39:1481–1490

    Article  CAS  Google Scholar 

  17. Freitas AR, Gaffo L, Rubira AF, Muniz EC (2014) Miscibility studies on polychloroprene/natural rubber (PCP/NR) blends by dilute solution viscometry (DSV) and scanning electronic microscopy (SEM) methods. J Mol Liq 190:146–150

    Article  CAS  Google Scholar 

  18. Guo Q, Luo P, Luo Y, Du F, Lu W, Liu S, Yu J (2012) Fabrication of biodegradable micelles with sheddable poly(ethylene glycol) shells as the carrier of 7-ethyl-10-hydroxy-camptothecin. Colloids Surfaces B: Biointerfaces 100:138–145

    Article  CAS  Google Scholar 

  19. Zhu GQ, Li GC, Wang P (2011) Surface morphology and properties of poly(γ-benzylL-glutamate)/poly(butyl acrylate-co-methyl methacrylate) blend film. Polym Plast Tech Eng 50:1470–1474

    Article  CAS  Google Scholar 

  20. Zhu G, Gao Q, Wang F, Zhang H (2011) Structure and performance of poly(vinyl alcohol)/poly(γ-benzylL-glutamate) blend membranes. Int J Polym Mater 60:720–728

    Article  CAS  Google Scholar 

  21. Kuo SW, Chen CJ (2011) Using hydrogen-bonding interactions to control the peptide secondary structures and miscibility behavior of poly(l-glutamate)s with phenolic resin. Macromolecules 44:7315–7326

    Article  CAS  Google Scholar 

  22. Kuo SW, Chen CJ (2012) Functional polystyrene derivatives influence the miscibility and helical peptide secondary structures of poly(γ-benzyll-glutamate). Macromolecules 45:2442–2452

    Article  CAS  Google Scholar 

  23. Lu YS, Lin YC, Kuo SW (2012) Macromolecules 45:6547–6556

    Article  CAS  Google Scholar 

  24. Murata K, Kono H, Katoh E, Kuroki S, Ando I (2003) Polym 44:4021–4027

    Article  CAS  Google Scholar 

  25. Mahesh B, Kathyayani D, Nanjundaswamy GS, Channe Gowda D, Sridhar R (2019) Carbohydr Polym 212:129–141

  26. Baba AR, Gowda DC, Kadimi US (2005) Ind J chem Sec B 44:1487

    Google Scholar 

  27. Huggins ML (1942) The viscosity of dilute solutions of long-chain molecules. IV Dependence on Concentration J Am Chem Soc 64:2716–2718

    CAS  Google Scholar 

  28. Masuelli MA (2011) Int J Biolog Macromol 48:286–291

    Article  CAS  Google Scholar 

  29. Chee KK (1990) Determination of polymer-polymer miscibility by viscometry. Eur Polym J 26:423–426

    Article  CAS  Google Scholar 

  30. Jiang WH, Han SJ (1998) An improved criterion of polymer–polymer miscibility determined by viscometry. Eur Polym J 34:1579–1584

    Article  CAS  Google Scholar 

  31. Sun Z, Wang W, Feng Z (1992) Criterion of polymer-polymer miscibility determined by viscometry. Eur Polym J 28:1259–1261

    Article  CAS  Google Scholar 

  32. Garcia R, Melad O, Gómez CM, Figueruelo JE, Campos A (1999) Eur Polym J 35:47–55

    Article  CAS  Google Scholar 

  33. Shetty GR, Rao BL, Asha S, Wang Y, Sangappa Y (2015) Preparation and characterization of silk fibroin/hydroxypropyl methyl cellulose (HPMC) blend films. Fibers Polym 16:1734–1741

    Article  CAS  Google Scholar 

  34. Lewandowska K, Sionkowska A, Grabska S, Kaczmarek B, Michalska M (2016) The miscibility of collagen/hyaluronic acid/chitosan blends investigated in dilute solutions and solids. J Mol Liq 220:726–730

    Article  CAS  Google Scholar 

  35. Radhakrishnan Nair MN, Biju PK, Thomas GV, Gopinathan Nair MR (2009) Blends of PVC and epoxidized liquid natural rubber: studies on impact modification. J Appl Polym Sci 111:48–56

    Article  Google Scholar 

  36. Wang C, Hu Z, Q’a Y, Liu X, Liu Q, Bao C (2020) J Polym Research:27–148

  37. Thomas S, Grohens Y, Jyotishkumar P (2014) (Eds) Wiley-VCH Verlag Weinheim Germany 978–3–527-33153-6

  38. Fox TG, Flory PJ (1950) Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J Appl Phys 21:581–591

    Article  CAS  Google Scholar 

  39. Wood LA (1958) Glass transition temperatures of copolymers. J Polym Sci 28:319–330

    Article  CAS  Google Scholar 

  40. Kannan M, Bhagawan SS, Thomas S, Joseph K (2013) Thermogravimetric analysis and differential scanning calorimetric studies on nanoclay-filled TPU/PP blends. J Therm Anal Calorim 112:1231–1244

    Article  CAS  Google Scholar 

  41. Zhou P, Zou L, Zha S, Yang A, Jiang S, Guan R (2020) Compatibility and thermal decomposition behavior of acrylic block copolymer modified epoxy resin. J Polym Res 27:4

    Article  CAS  Google Scholar 

  42. Dandurand J, Samouillan V, Lacoste-Ferre MH, Lacabanne C, Bochicchio B, Pepe A (2014) Conformational and thermal characterization of a synthetic peptidic fragment inspired from human tropoelastin: signature of the amyloid fibers. Pathol Biol 62(2):100–107

    Article  CAS  Google Scholar 

  43. Nair RM, Bindhu B, Reena VL (2020) A polymer blend from gum Arabic and sodium alginate - preparation and characterization. J Polym Res. https://doi.org/10.1007/s10965-020-02128-y

  44. Gaabour LH (2017) Spectroscopic and thermal analysis of polyacrylamide/chitosan (PAM/CS) blend loaded by gold nanoparticles. Results in Physics 7:2153–2158

    Article  Google Scholar 

  45. Mahesh B, Nanjundaswamy GS, Kathyayani D, Channe Gowda D, Siddaramaiah (2019) Impact of blend proportion on the miscibility and thermal characteristics of synthetic plastic-derived Polypentapeptide with commercially available polyvinyl alcohol. J Polym Environ 27(10):2267–2280

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial assistance from 1) Vision Group on Science and Technology; Department of IT, BT and S and T; Government of Karnataka, INDIA under CISEE scheme: Ref: No. VGST/CISEE/GRD326/2014-15(2015-16) 2) Administration of JSS Mahavidyapeetha, Mysuru, Principal, JSSATE, Bengaluru for the amenities and motivating and 3) also grateful to Mr. Nanjundaswamy GS for his suitable help while preparing the document.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Mahesh.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahesh, B., Kathyayani, D., Channe Gowda, D. et al. Blends of synthetic plastic-derived polypeptide with Hydroxypropylmethylcellulose and polyvinyl alcohol: unraveling the specific interaction parameters, morphology and thermal stability of the polymers couple. J Polym Res 27, 278 (2020). https://doi.org/10.1007/s10965-020-02191-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02191-5

Keywords

Navigation