Skip to main content
Log in

Reversing and non-reversing effects of PEEK-HA composites on tuning cooling rate during crystallization

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

The development of bio-compatible materials for bone implants bone healing is one of the key research areas in biomaterials. In this paper, composites of polyether-ether-ketone (PEEK) (a bio-compatible polymer) and hydroxyapatite (HA) were synthesized using thermal process, The qualities of the composites were analyzed with X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) for characterizing the nature of stress and bonding. The morphological study of the PEEK-HA composites were studied through Scanning electron microscopy. The compressive nature of the composites as well as raw materials was observed based on XRD data with internal lattice-strain analysis. The temperature-modulated differential scanning calorimetry (TM-DSC) and conventional differential scanning calorimetry (DSC) were performed for analyzing the crystallization process. The TM-DSC showed that both reversing and non-reversing processes were active during the crystallization between 160 °C–330 °C. However, a higher residual time of PEEK at elevated temperatures tends to facilitate polymer degradation and spread the crystallization process over a broader temperature range. Addition of HA particles provided heterogeneous nucleation sites for crystallization but also reduced the mobility of polymer chains. The combination of enhanced nucleation rate, reduced chain mobility and polymer degradation processes together lead to a wide range of crystallinity in PEEK-HA composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Ghalia MA, Dahman Y (2017) Biodegradable poly(lactic acid)-based scaffolds: synthesis and biomedical applications. J Polym Res 24:74–22. https://doi.org/10.1007/s10965-017-1227-2

    Article  CAS  Google Scholar 

  2. Deviate SN, Physics C, York W, et al (2011) Encyclopedic dictionary of polymers. Springer New York, New York

  3. Blundell DJ, Osborn BN (1983) The morphology of poly(aryl-ether-ether-ketone). Polymer (Guildf) 24:953–958. https://doi.org/10.1016/0032-3861(83)90144-1

    Article  CAS  Google Scholar 

  4. Zhang Y, Li J, Zhang Z et al (2019) Dynamical behaviors of polylactide crystallization. J Polym Res 26. https://doi.org/10.1007/s10965-019-1698-4

  5. Williams DF, McNamara A, Turner RM (1987) Potential of polyetheretherketone (PEEK) and carbon-fibre-reinforced PEEK in medical applications. J Mater Sci Lett 6:188–190. https://doi.org/10.1007/BF01728981

    Article  CAS  Google Scholar 

  6. Rae PJ, Brown EN, Orler EB (2007) The mechanical properties of poly(ether-ether-ketone) (PEEK) with emphasis on the large compressive strain response. Polymer (Guildf) 48:598–615. https://doi.org/10.1016/j.polymer.2006.11.032

    Article  CAS  Google Scholar 

  7. Kurtz SM, Devine JN (2007) PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28:4845–4869. https://doi.org/10.1016/j.biomaterials.2007.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Abu Bakar MS, Cheng MHW, Tang SM et al (2003) Tensile properties, tension-tension fatigue and biological response of polyetheretherketone-hydroxyapatite composites for load-bearing orthopedic implants. Biomaterials 24:2245–2250. https://doi.org/10.1016/S0142-9612(03)00028-0

    Article  CAS  PubMed  Google Scholar 

  9. Ma R, Tang T (2014) Current strategies to improve the bioactivity of PEEK. Int J Mol Sci 15:5426–5445. https://doi.org/10.3390/ijms15045426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu C, Chan K, Shen J et al (2016) Polyetheretherketone hybrid composites with bioactive Nanohydroxyapatite and multiwalled carbon nanotube fillers. Polymers (Basel) 8:425. https://doi.org/10.3390/polym8120425

    Article  CAS  PubMed Central  Google Scholar 

  11. Asare-Yeboah K, Bi S, He Z, Li D (2016) Temperature gradient controlled crystal growth from TIPS pentacene-poly(α-methyl styrene) blends for improving performance of organic thin film transistors. Org Electron 32:195–199. https://doi.org/10.1016/j.orgel.2016.02.028

    Article  CAS  Google Scholar 

  12. He Z, Shaik S, Bi S, et al (2015) Air-stable solution-processed n -channel organic thin film transistors with polymer-enhanced morphology 183301:1–6

  13. Bi S, Li Y, He Z et al (2019) Self-assembly diketopyrrolopyrrole-based materials and polymer blend with enhanced crystal alignment and property for organic field-effect transistors. Org Electron 65:96–99. https://doi.org/10.1016/j.orgel.2018.11.008

    Article  CAS  Google Scholar 

  14. Chen J, Shao M, Xiao K et al (2013) Conjugated polymer-mediated polymorphism of a high performance, small-molecule organic semiconductor with tuned intermolecular interactions, enhanced long-range order, and charge transport. Chem Mater 25:4378–4386. https://doi.org/10.1021/cm403039y

    Article  CAS  Google Scholar 

  15. He Z, Xiao K, Durant W et al (2011) Enhanced performance consistency in nanoparticle/TIPS pentacene-based organic thin film transistors. Adv Funct Mater 21:3617–3623. https://doi.org/10.1002/adfm.201002656

    Article  CAS  Google Scholar 

  16. Okazaki Y, Gotoh E (2005) Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 26:11–21. https://doi.org/10.1016/j.biomaterials.2004.02.005

    Article  CAS  PubMed  Google Scholar 

  17. Scharf B, Clement CC, Zolla V et al (2015) Molecular analysis of chromium and cobalt-related toxicity. Sci Rep 4:5729. https://doi.org/10.1038/srep05729

    Article  CAS  Google Scholar 

  18. Ajami S, Coathup MJ, Khoury J, Blunn GW (2017) Augmenting the bioactivity of polyetheretherketone using a novel accelerated neutral atom beam technique. J Biomed Mater Res - Part B Appl Biomater 105:1438–1446. https://doi.org/10.1002/jbm.b.33681

    Article  CAS  PubMed  Google Scholar 

  19. dos Santos SA, Rodrigues BVM, Oliveira FC et al (2019) Characterization and in vitro and in vivo assessment of poly(butylene adipate-co-terephthalate)/nano-hydroxyapatite composites as scaffolds for bone tissue engineering. J Polym Res 26:53–11. https://doi.org/10.1007/s10965-019-1706-8

    Article  CAS  Google Scholar 

  20. Converse GL, Yue W, Roeder RK (2007) Processing and tensile properties of hydroxyapatite-whisker-reinforced polyetheretherketone. Biomaterials 28:927–935. https://doi.org/10.1016/j.biomaterials.2006.10.031

    Article  CAS  PubMed  Google Scholar 

  21. Li K, Yeung CY, Yeung KWK, Tjong SC (2012) Sintered hydroxyapatite/polyetheretherketone nanocomposites: mechanical behavior and biocompatibility. Adv Eng Mater 14:155–165. https://doi.org/10.1002/adem.201080145

    Article  CAS  Google Scholar 

  22. Ma R, Tang S, Tan H et al (2014) Preparation, characterization, and in vitro osteoblast functions of a nano-hydroxyapatite/polyetheretherketone biocomposite as orthopedic implant material. Int J Nanomedicine 9:3949–3961. https://doi.org/10.2147/IJN.S67358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chan KW, Liao CZ, Wong HM et al (2016) Preparation of polyetheretherketone composites with nanohydroxyapatite rods and carbon nanofibers having high strength, good biocompatibility and excellent thermal stability. RSC Adv 6:19417–19429. https://doi.org/10.1039/c5ra22134j

    Article  CAS  Google Scholar 

  24. Liliana Burakowski Nohara, Michelle Leali Costa, Mauro Angelo Alves, Marta Ferreira Koyama Takahashi, Evandro Luís Nohara, Mirabel Cerqueira Rezende, (2010) Processing of high performance composites based on peek by aqueous suspension prepregging. Materials Research 13 (2):245–252

    Article  CAS  Google Scholar 

  25. Jonas A, Legras R (1991) Thermal stability and crystallization of poly(aryl ether ether ketone). Polymer (Guildf) 32:2691–2706. https://doi.org/10.1016/0032-3861(91)90095-Z

    Article  CAS  Google Scholar 

  26. Kuo MC, Huang JC, Chen M (2006) Non-isothermal crystallization kinetic behavior of alumina nanoparticle filled poly(ether ether ketone). Mater Chem Phys 99:258–268. https://doi.org/10.1016/j.matchemphys.2005.10.021

    Article  CAS  Google Scholar 

  27. Rigano L, Lionetti N (2016) Nanobiomaterials in galenic formulations and cosmetics. In: Nanobiomaterials in Galenic Formulations and Cosmetics. Elsevier, pp 121–148

  28. Kuo MC, Tsai CM, Huang JC, Chen M (2005) PEEK composites reinforced by nano-sized SiO2 and A1 2O3^Os particulates. Mater Chem Phys 90:185–195. https://doi.org/10.1016/j.matchemphys.2004.10.009

    Article  CAS  Google Scholar 

  29. Okazaki I, Wunderlich B (1997) Reversible melting in polymer crystals detected by temperature-modulated differential scanning calorimetry. Macromolecules 30:1758–1764. https://doi.org/10.1021/ma961539d

    Article  CAS  Google Scholar 

  30. Rivera-Muñoz EM, Velázquez-Castillo R, Huirache-Acuña R et al (2012) Synthesis and characterization of hydroxyapatite-based nanostructures: nanoparticles, Nanoplates, Nanofibers and Nanoribbons. Mater Sci Forum 706–709:589–594. https://doi.org/10.4028/www.scientific.net/MSF.706-709.589

    Article  CAS  Google Scholar 

  31. Zhao F, Li D, Jin Z (2018) Preliminary investigation of poly-ether-ether-ketone based on fused deposition modeling for medical applications. Materials (Basel) 11:288. https://doi.org/10.3390/ma11020288

    Article  CAS  Google Scholar 

  32. Panda RN, Hsieh MF, Chung RJ, Chin TS (2003) FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique. J Phys Chem Solids 64:193–199. https://doi.org/10.1016/S0022-3697(02)00257-3

    Article  CAS  Google Scholar 

  33. Righetti M (2017) Crystallization of polymers investigated by temperature-modulated DSC. Materials (Basel) 10:442. https://doi.org/10.3390/ma10040442

    Article  CAS  Google Scholar 

  34. Chalmers JM, Everall NJ, Ellison S (1996) Specular reflectance: a convenient tool for polymer characterisation by FTIR-microscopy? Micron 27:315–328. https://doi.org/10.1016/S0968-4328(96)00021-2

    Article  CAS  Google Scholar 

  35. Koziara BT, Nijmeijer K, Benes NE (2015) Optical anisotropy, molecular orientations, and internal stresses in thin sulfonated poly(ether ether ketone) films. J Mater Sci 50:3031–3040. https://doi.org/10.1007/s10853-015-8844-0

    Article  CAS  Google Scholar 

  36. Yusong P, Qianqian S, Yan C (2013) Fabrication and characterisation of functional gradient hydroxyapatite reinforced poly (ether ether ketone) biocomposites. Micro &amp. Nano Lett 8:357–361. https://doi.org/10.1049/mnl.2013.0265

    Article  CAS  Google Scholar 

  37. Ma R, Guo D (2019) Evaluating the bioactivity of a hydroxyapatite-incorporated polyetheretherketone biocomposite. J Orthop Surg Res 14:1–13. https://doi.org/10.1186/s13018-019-1069-1

    Article  Google Scholar 

  38. Hosseinpour M, Zendehnam A, Hamidi Sangdehi SM, Ghomi Marzdashti H (2019) Effects of different gas flow rates and non-perpendicular incidence angles of argon cold atmospheric-pressure plasma jet on silver thin film treatment. J Theor Appl Phys 7. https://doi.org/10.1007/s40094-019-00351-7

    Article  Google Scholar 

  39. Zhang MQ, Lu ZP, Friedrich K (1997) Thermal analysis of the wear debris of polyetheretherketone. Tribol Int 30:103–111. https://doi.org/10.1016/0301-679X(96)00028-X

    Article  CAS  Google Scholar 

  40. Nguyen HX, Ishida H (1986) Molecular analysis of the crystallization behavior of poly(aryl-ether-ether-ketone). J Polym Sci Part B Polym Phys 24:1079–1091. https://doi.org/10.1002/polb.1986.090240510

    Article  CAS  Google Scholar 

  41. Xu J, Ma Y, Hu W et al (2009) Cloning polymer single crystals through self-seeding. Nat Mater 8:348–353. https://doi.org/10.1038/nmat2405

    Article  CAS  PubMed  Google Scholar 

  42. Pae KD, Sauer JA (1968) Effects of thermal history on isotactic polypropylene. J Appl Polym Sci 12:1901–1919. https://doi.org/10.1002/app.1968.070120811

    Article  CAS  Google Scholar 

  43. Day M, Deslandes Y, Roovers J, Suprunchuk T (1991) Effect of molecular weight on the crystallization behaviour of poly(aryl ether ether ketone): a differential scanning calorimetry study. Polymer (Guildf) 32:1258–1266. https://doi.org/10.1016/0032-3861(91)90230-G

    Article  CAS  Google Scholar 

  44. Seo J, Gohn AM, Dubin O et al (2019) Isothermal crystallization of poly(ether ether ketone) with different molecular weights over a wide temperature range. Polym Cryst 2:e10055. https://doi.org/10.1002/pcr2.10055

    Article  CAS  Google Scholar 

  45. Li H, Zhang B, Lin B et al (2018) Electrospun poly(ether ether ketone) nanofibrous separator with superior performance for lithium-ion batteries. J Electrochem Soc 165:A939–A946. https://doi.org/10.1149/2.0611805jes

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Manipal Institute of Technology, India for the help in XRD characterization. Authors sincerely acknowledge Advanced Research in Polymeric Materials, India for extending their help in materials preparation and SEM characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujoy Kumar Dey.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• PEEK-HA as a reusable material.

• Crystallization process consist of reversing and non-reversing processes

• It shows two peaks in DSC at the time of crystallization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S.K., Chatterjee, S., Spieckermann, F. et al. Reversing and non-reversing effects of PEEK-HA composites on tuning cooling rate during crystallization. J Polym Res 26, 279 (2019). https://doi.org/10.1007/s10965-019-1967-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1967-2

Keywords

Navigation