Skip to main content
Log in

Synthesis of sodium alginate grafted stearate acid (NaAlg-g-St) and evaluation of the polymer as drug release controlling matrix

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Sodium alginate grafted stearic acid (NaAlg-g-St) was synthesized via the reaction of stearic acid and sodium alginate (NaAlg) in the presence of diisopropylcarbodiimid (DIC) under the solvent free condition. Sustained release matrix tablets of indomethacin (IM) were developed by employing sodium alginate or the new synthesized polymer. The drug dissolution test and other physicochemical properties were evaluated for each formulation. The results of this study showed that sodium alginate grafted stearic acid, has a good effect on the sustained releasing feature of the tablets and causes the drug to be released gradually; and probably, causes less side effects and more compliance in patients. In the physicochemical tests, the usage of NaAlg or the NaAlg-g-St was not effective on the tablet’s hardness but in other tests made a significant change statistically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lendlein A, Sisson A (2011) Handbook of biodegradable polymers: isolation, synthesis, characterization and applications. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  2. Ottenbrite RM, Kim SW (2019) Polymeric drugs and drug delivery systems. CRC Press, Boca Raton

    Book  Google Scholar 

  3. Kang Y, Wang C, Qiao Y et al (2019). Biomacromolecules 20:1765–1776

    Article  CAS  Google Scholar 

  4. Zhao W, Li J, Jin K et al (2016). Mater Sci Eng C 59:1181–1194

    Article  CAS  Google Scholar 

  5. Bachelder EM, Pino EN, Ainslie KM (2016). Chem Rev 117:1915–1926

    Article  Google Scholar 

  6. Hu Y, Peng J, Ke L et al (2016). J Polym Res 23:129

    Article  Google Scholar 

  7. Rodrigues D, Freitas AC, Pereira L et al (2015). Food Chem 183:197–207

    Article  CAS  Google Scholar 

  8. Abedini F, Ebrahimi M, Roozbehani AH et al (2018). Polym Adv Technol 29:2564–2573

    Article  CAS  Google Scholar 

  9. Hu Y, Zhang S, Han D et al (2018). J Polym Res 25:148

    Article  Google Scholar 

  10. Akın A, Işıklan N (2016). Int J Biol Macromol 82:530–540

    Article  Google Scholar 

  11. Kumar D, Pandey J, Raj V et al (2017). Open Med Chem J 11:109

    Article  CAS  Google Scholar 

  12. Ali U, KJBA K, Buang NA (2015). Polym Rev 55:678–705

    Article  CAS  Google Scholar 

  13. Işıklan N, Küçükbalcı G (2012). Eur J Pharm Biopharm 82:316–331

    Article  Google Scholar 

  14. Ramesh KS (2015). Asian J Pharm 9:234–242

    CAS  Google Scholar 

  15. Brunton LL (2014) Goodman and Gilman's manual of pharmacology and therapeutics. McGraw-Hill, New York

    Google Scholar 

  16. Horibe S, Tanahashi T, Kawauchi S et al (2016). Int J Med Sci 13:653–663

    Article  CAS  Google Scholar 

  17. Nawale R, Mohite K (2013). Int J Pharm Sci Res 4:3670–3677

    CAS  Google Scholar 

  18. Pharmacopeia U (2014) Rockville: US Pharmacopeia

  19. Işıklan N, Kurşun F, İnal M (2010). Carbohydrate polym 79:665–672

    Article  Google Scholar 

  20. Varshosaz J, Hassanzadeh F, Sadeghi H et al (2012). J Nanomater 2012 Article ID:265657

  21. Varshosaz J, Hassanzadeh F, Sadeghi-Aliabadi H et al (2014). BioMed Res Int 2014 Article ID:708593

  22. Anwar H, Ahmad M, Minhas MU et al (2017). Carbohydr Polym 166:183–194

    Article  CAS  Google Scholar 

  23. Youssouf L, Lallemand L, Giraud P et al (2017). Carbohydr Polym 166:55–63

    Article  CAS  Google Scholar 

  24. Elsayed NH, Monier M, RAS A (2016). Carbohydr Polym 145:121–131

    Article  CAS  Google Scholar 

  25. Badri W, Miladi K, Robin S et al (2017). Pharm Res 34:1773–1783

    Article  CAS  Google Scholar 

  26. Padrela L, Rodrigues MA, Velaga SP et al (2009). Eur J Pharm Sci 38:9–17

    Article  CAS  Google Scholar 

  27. Choudhary S, Reck JM, Carr AJ et al (2018). Polym Adv Technol 29:198–204

    Article  CAS  Google Scholar 

  28. Yang J, Dong H (2016). Carbohydr Polym 153:1–6

    Article  CAS  Google Scholar 

  29. Marounek M, Volek Z, Taubner T et al (2019). Int J Biol Macromol 122:499–502

    Article  CAS  Google Scholar 

  30. Taubner T, Marounek M, Synytsya A (2017). Int J Biol Macromol 103:202–207

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge financial support for this work by the deputy of research, Hamadan University of Medical Sciences (Grant number: 960115172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzin Firozian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chehardoli, G., Bagheri, H. & Firozian, F. Synthesis of sodium alginate grafted stearate acid (NaAlg-g-St) and evaluation of the polymer as drug release controlling matrix. J Polym Res 26, 175 (2019). https://doi.org/10.1007/s10965-019-1840-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1840-3

Keywords

Navigation