Skip to main content
Log in

New polymeric membrane nanofiltration for succinate recovery: a comparative study

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Bio-based succinic acid recovery from fermentation broth has remained a challenge in the separation industry due the presence of by-products with similar physicochemical properties. In this work, the selective separation of succinate from succinate model solutions and the actual fermentation broth were investigated using newly fabricated polyimide P84 (PI) nanofiltration (NF) membrane and compared with three types of commercial pressure filtration membranes namely NF1, NF2 and NF270. Results show that PI membrane demonstrated comparable inorganic salt rejections performance as the commercial NF membranes of 86% and 99% for NaCl and Na2SO4, respectively. However PI shows much lower surface roughness, beneficial in reducing the fouling effect. PI also demonstrated equivalent performance for succinate permeation flux and retention at high concentration as the commercial membranes. PI exhibited high succinate retention (95%) in actual fermentation broth, equivalent to the commercial membranes (92–99%) and also higher selectivity factor (SF) < 0.14 compared to the NF1 membrane, SF < 0.19. Thus the PI membrane could give better succinate recovery against other carboxylates in the fermentation broth than the commercial membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sener A, Kadiata MM, Ladrie’re L, Malaisse WJ (1997) synergistic insulinotropic action of succinate, acetate, and glucose esters in islets from normal and diabetic rats. Endocrine 7:151–155

    Article  CAS  Google Scholar 

  2. Chimirri F, Bosco F, Ceccarelli R, Venturello A, Geobaldo F (2010) Succinic acid and its derivatives: fermentative production using sustainable industrial agro food by-products and its applications in the food industry. Ital J Food Sci 22:119–125

    CAS  Google Scholar 

  3. Datta R, Glassner DA, Jain MK, Vick Roy JR (1992) Fermentation and purification process for succinic acid. US Patent 5,168,055, 1 Dec 1992

  4. Guettler MV, Jain MK, Rumler D (1996) Method for making succinic acid bacterial variants for use in the process, and methods for obtaining variants. US Patent 5,573,931, 1996

  5. Liu Y-P, Zheng P, Sun Z-H, Ni Y, Dong J-J, Zhu L-L (2008) Economical succinic acid production from cane molasses by Actinobacillus succinogenes. Bioresour Technol 99:1736–1742

    Article  CAS  Google Scholar 

  6. Cukalovic A, Stevens CV (2008) Feasibility of production methods for succinic acid derivatives: a marriage of renewable resources and chemical technology. Biofuels Bioprod Biorefin 2:505–529

    Article  CAS  Google Scholar 

  7. Jansen ML, van Gulik WM (2014) Towards large scale fermentative production of succinic acid. Curr Opin Biotechnol 30:190–197

    Article  CAS  Google Scholar 

  8. Wang C, Ming W, Yan D, Zhang C, Yang M, Liu Y, Zhang Y, Guo B, Wan Y, Xing J (2014) Novel membrane-based biotechnological alternative process for succinic acid production and chemical synthesis of bio-based poly(butylene succinate). Bioresour Technol 156:6–13

    Article  CAS  Google Scholar 

  9. Song H, Huh YS, Lee SY, Hong WH, Hong YK (2007) Recovery of succinic acid produced by fermentation of a metabolically engineered Mannheimia succiniciproducens strain. J Biotechnol 132:445–452

    Article  CAS  Google Scholar 

  10. Agarwal L, Isar J, Saxena R (2005) Rapid screening procedures for identification of succinic acid producers. J Biochem Biophys 63:24–32

    Article  CAS  Google Scholar 

  11. Song H, Lee SY (2006) Production of succinic acid by bacterial fermentation. Enzym Microb Technol 39:352–361

    Article  CAS  Google Scholar 

  12. Li Q, Wang D, Wu Y, Li WL, Zhang YJ, Xing JM, ZG S (2010) One step recovery of succinic acid from fermentation broths by crystallization. Sep Purif Technol 72:294–300

    Article  CAS  Google Scholar 

  13. Guettler MV, Rumler D, Jain MK (1999) Actinobacillus succinogenes sp.nov., a novel succinic-acid-producing strain from the bovine rumen. Int J Syst Evolut 49:207–216

    CAS  Google Scholar 

  14. Anderson C, Helmerius J, Hodge D, Berglund KA, Rova U (2009) Inhibition of succinic acid production in metabolically engineered Escherichia Coli by neutralizing agent, organic acids and osmolarity. Biotechnol Prog 25:116–123

    Article  Google Scholar 

  15. Gerberding SJ, Singh R (2012) Purification of succinic acid from the fermentation broth contining ammonium succinate. US Patent EP2519491 A2, 7 Nov 2012

  16. Baniel AM, Eyal AM (1995) Citric acid extraction. US Patent 5426220 A, 20 June 1995

  17. Bernier RL, Dunuwila D, Cockrem MCM, Fruchey OS, Keen BT, Albin BA, Dombek BD, Clinton NA (2013) Processes for purification of succinic acid via distillation. US Patent 20130150621 A1, 13 June 2013

  18. Choi J-H, Fukushi K, Yamamoto K (2008) A study on the removal of organic acids from wastewaters using nanofiltration membranes. Sep Purif Technol 59:17–25

    Article  CAS  Google Scholar 

  19. Sosa PA, Roca C, Velizarov S (2016) Membrane assisted recovery and purification of bio-based succinic acid for improved process sustainability. J Membr Sci 501:236–247

    Article  CAS  Google Scholar 

  20. Zaman NK, Law JY, Chai PV, Rohani R, Mohamad AW (2017) Recovery of organic acids from fermentation broth using Nanofiltration technologies: a review. J Phys Sci 28:85–109

    Article  Google Scholar 

  21. Kang SH, Chang YK (2005) Removal of organic acid salts from simulated fermentation broth containing succinate by nanofiltration. J Membr Sci 246:49–57

    Article  CAS  Google Scholar 

  22. Van der Burggen B, Koninckx A, Vandecasteele C (2004) Separation of monovalent and divalent ion from aqueous solution by electrodialysis and nanofiltration. Water Res 38:1347–1353

    Article  Google Scholar 

  23. Liu Q, G-R X (2016) Graphene oxide (GO) as functional material in tailoring polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes. Desalination 394:162–175

    Article  CAS  Google Scholar 

  24. See-Toh YH, Ferreira FC, Livingston AG (2007) The influence of membrane formation parameters on the functional performance of organic solvent nanofiltration membranes. J Membr Sci 299:236–250

    Article  CAS  Google Scholar 

  25. Polotskaya GA, Meleshko TK, Gofman IV (2009) Polyimide ultrafiltration membranes with high thermal stability and chemical durability. Sep Sci Technol 44:3814–3831

    Article  CAS  Google Scholar 

  26. Ohya H, Kudryavtsev VV, Semenova SI (1996) Polyimide membranes: application, fabrications and properties. Gordon and Breach Publishers, Tokyo,

    Google Scholar 

  27. Tan JP, Jahim JM, Harun S, Wu TY, Mumtaz T (2015) Utilization of oil palm fronds as a sustainable carbon source in biorefineries. Int J Hydrog Energy 41:4896–4906

  28. Vandezande P, Li X, Gevers LEM, Vankelecom IFJ (2009) High throughput study of phase inversion parameters for polyimide-based SRNF membranes. J Membr Sci 330:307–318

    Article  CAS  Google Scholar 

  29. Umpuch C, Galier S, Kanchanatawee S, Roux-de-Balmann H (2010) Nanofiltration as a purification step in production process of organic acids: selectivity improvement by addition of an inorganic salt. Process Biochem 45:1763–1768

    Article  CAS  Google Scholar 

  30. Manttari M, Van der Burggen B, Nystrom M (2013) Nanofiltration. In: Ramaswamy S, Huang H-J, Ramarao BV (eds) Sep. Purif. Technol. Biorefineries. John Wiley & Sons, Ltd

  31. Gilron J, Gara N, Kedem O (2001) Experimental analysis of negative salt rejection in nanofiltration membranes. J Membr Sci 185:223–236

    Article  CAS  Google Scholar 

  32. Zaman NK, Rohani R, Mohammad AW, Isloor AM, Jahim JM (2017) Investigation of succinic acid recovery from aqueous solution and fermentation broth using polyimide Nanofiltration membrane. J Environ Chem Eng. https://doi.org/10.1016/j.jece.2017.09.047

  33. Freger V, Arnot TC, Howell JA (2000) Separation of concentrated organic/inorganic salt mixtures by nanofiltration. J Membr Sci 178:185–193

    Article  CAS  Google Scholar 

  34. Koyuncu I, Topacik D, Wiesner MR (2004) Factors influencing flux decline during nanofiltration of solution containing dyes and salts. Water Res 38:432–440

    Article  CAS  Google Scholar 

  35. Nystrom M, Kaipia L, Luque S (1995) Fouling and retention of nanofiltration membranes. J Membr Sci 98:249–262

    Article  Google Scholar 

  36. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988

    Article  CAS  Google Scholar 

  37. Childress AE, Elimelech M (2000) Relating Nanofiltration membrane performance to membrane charge (Electrokinetic) characteristics. Environ Sci Technol 34:3710–3716

    Article  CAS  Google Scholar 

  38. Oak MS, Kobayashi T, Wang HY, Fukaya T, Fujii N (1997) pH effect on molecular size exclusion of polyacrylonitrile ultrafiltration membranes having carboxylic acid groups. J Membr Sci 123:185–195

    Article  CAS  Google Scholar 

  39. Nghiem LD, Hawkes S (2007) Effects of membrane fouling on the nanofiltration of pharmaceutically active compounds (PhACs): mechanisms and role of membrane pore size. Sep Purif Technol 57:182–190

    Article  Google Scholar 

  40. Luoa J, Dingb L, Sua Y, ShaopingWei WY (2010) Concentration polarization in concentrated saline solution during desalination of iron dextran by nanofiltration. J Membr Sci 363:170–179

    Article  Google Scholar 

  41. Van der Schueren B, Koninckx A, Vandecasteele C (2004) Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration. Water Res 38:1347–1353

    Article  Google Scholar 

  42. De Oliveira RRL, Albuquerque DAC, Cruz TGS, Yamaji FM, Leite FL (2012) Measurement of the nanoscale roughness by atomic force microscopy: basic principles and applications. In: Bellitto V (ed) Atomic force microscopy - imaging, measuring and manipulating surfaces at the atomic scale. InTech. https://doi.org/10.5772/37583

  43. Hoek EMV, Bhattacharjee S, Elimelech M (2003) Effect of membrane surface roughness on colloid-membrane DLVO interactions. Langmuir 19:4836–4847

    Article  CAS  Google Scholar 

  44. George SC, Thomas S (2001) Transport phenomena through polymeric systems. Prog Polym Sci 26:985–1017

    Article  CAS  Google Scholar 

  45. Ohrem HL, Buettgenbach LD (1998) Discoloration of fermentation broth. German Patent

  46. Ratta V (1999) Crystallization, morphology, thermal stability and adhesive properties of novel high performance semicrystalline polyimides. Faculty of Virginia Institute and State University

  47. Krieg HM, Modise SJ, Keizer K, Neomagus HWJP (2004) Salt rejection in nanofiltration for single and binary salt mixtures in view of sulphate removal. Desalination 171:205–215

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the LRGS Project Future Biorefineries [LRGS/2013/UKM_UKM/PT/03] and Geran Universiti Penyelidikan [GUP-086-2016] by UKM for providing financial support for this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosiah Rohani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaman, N.K., Rohani, R., Mohammad, A.W. et al. New polymeric membrane nanofiltration for succinate recovery: a comparative study. J Polym Res 24, 197 (2017). https://doi.org/10.1007/s10965-017-1359-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1359-4

Keywords

Navigation