Skip to main content
Log in

Effect of hard segment length on the properties of poly(ether ester) elastomer prepared by one pot copolymerization of poly(ethylene glycol) and cyclic butylene terephthalate

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A series of poly(ether ester) thermoplastic elastomer were synthesized by a novel single step of cyclic butylene terephthalate (CBT) and poly(ethylene glycol) (PEG) in the presence of stannoxane catalyst at an elevated temperature. The resultant copolymers (pCBT–PEG) based on polymerized cyclic butylene terephthalate (pCBT) as the hard segment and PEG as the soft segment were characterized by means of fourier transform infrared spectrometer (FI-IR), proton nuclear magnetic resonance (1H NMR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) testing. The influence of hard segment length on the properties of the copolymer was investigated in the case of the soft segment length remaining constant. It is found that the pCBT segment length calculated from 1H NMR spectra was decreased with the increase of PEG content. The glass transition, melting and crystallization temperatures and the degree of crystallinity of hard segments were increased with the increase of the pCBT segment length. Thermogravimetry (TG) and derivative TG (DTG) results revealed that the thermal degradation of copolymers was slower than that of the pCBT homopolymer. Mechanical properties of polymers were also reported and the stiffness of the copolymer was improved with the increase of hard segment length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang Y, Feng ZG, Feng QL, Cui FZ (2004) The influence of soft segment length on the properties of poly(butylene terephthalate-co-succinate)-b-poly(ethylene glycol) segmented random copolymers. Eur Polym J 40:1297–1308

    Article  CAS  Google Scholar 

  2. Deschamps AA, Grijpma DW, Feijen J (2001) Poly(ethylene oxide)/poly(butylene terephthalate) segmented block copolymers: the effect of copolymer composition on physical properties and degradation behavior. Polymer 42:9335–9345

    Article  CAS  Google Scholar 

  3. Wang Y, Liu CB, Fan LY, Sheng Y, Mao J, Chao GT, Li J, Tu MJ, Qian ZY (2005) Synthesis of biodegradable poly(butylene terephthalate)/poly(ethylene glycol) (PBT/PEG) multiblock copolymers and preparation of indirubin loaded microspheres. Polym Bull 53:147–154

    Article  CAS  Google Scholar 

  4. Chao GT, Fan LY, Jia WJ, Qian ZY, Gu YC, Liu CB, Ni XP, Li J, Deng HX, Gong CC, Gou ML, Lei K, Huang AL, Huang CH, Yang JL, Kan B, Tu MJ (2007) Synthesis, characterization and hydrolytic degradation of degradable poly(butylene terephthalate)/poly(ethylene glycol) (PBT/PEG) copolymers. Mater Sci Mater Med 18:449–455

    Article  CAS  Google Scholar 

  5. Wang BT, Zhang Y, Guo ZH, Cheng J, Fang ZP (2011) Biodegradable aliphatic/aromatic copoly(ester-ether)s: the effect of poly(ethylene glycol) on physical properties and degradation behavior. J Polym Res 18:187–196

    Article  Google Scholar 

  6. Huang WC, Wan YB, Chen JY, Xu QZ, Li XH, Yang XM, Li YW, Tu YF (2014) One pot synthesis and characterization of novel poly(ether ester) mutiblock copolymers containing poly(tetramethylene oxide) and poly(ethylene terephthalate). Polym Chem 5:945–954

    Article  CAS  Google Scholar 

  7. Xu QZ, Chen JY, Huang WC, Qu TG, Li XH, Li XM, Tu YF (2013) One pot, one feeding step, two-stage polymerization synthesis and characterization of (PTT-b-PTMO-b-PTT)(n) multiblock copolymers. Macromolecules 46:7274–7281

    Article  CAS  Google Scholar 

  8. Szymczyk A (2009) Structure and properties of new polyester elastomers composed of poly(trimethylene terephthalate) and poly(ethylene oxide). Eur Polym J 45:2653–2664

    Article  CAS  Google Scholar 

  9. Deschamps AA, van Apeldoorn AA, Hayen H, Bruijn JD, Karst U, Grijpma DW, Feijen J (2004) In vivo and in vitro degradation of poly(ether ester) block copolymers based on poly(ethylene glycol) and poly(butylene terephthalate). Biomaterials 25:247–258

    Article  CAS  Google Scholar 

  10. Luo SL, Li FX, Yu JY (2011) The thermal, mechanical and viscoelastic properties of poly(butylene succinate-co -terephthalate) (PBST) copolyesters with high content of BT units. J Polym Res 18:393–400

    Article  CAS  Google Scholar 

  11. Li FX, Luo SL, Yu JY (2010) Mechanical, thermal properties and isothermal crystallization kinetics of biodegradable poly(butylene succinate-co-terephthalate) (PBST) fibers. J Polym Res 17:279–287

    Article  CAS  Google Scholar 

  12. Broza G (2010) Thermoplastic elastomers with multi-walled carbon nanotubes: influence of dispersion methods on morphology. Compos Sci Technol 70:1006–1010

    Article  CAS  Google Scholar 

  13. Pang K, Kotek R, Tonelli A (2006) Review of conventional and novel polymerization processes for polyesters. Prog Polym Sci 31:1009–1037

    Article  CAS  Google Scholar 

  14. Mazurek M, Bruliński T, Tomczyk K, Parzuchowski P, Florjańczyk Z, Plichta A, Rokicki G (2015) Aliphatic-aromatic poly(ester-carbonate)s obtained from simple carbonate esters, α, ω-aliphatic diols and dimethyl terephthalate. J Polym Res 22:34

    Article  Google Scholar 

  15. Hall AJ, Hodge P (1999) Recent research on the synthesis and applications of cyclic oligomers. React Funct Polym 41:133–139

    Article  CAS  Google Scholar 

  16. Hodge P, Yang Z, Ben-Haida A, Mcgrail CS (2000) Cyclo-depolymerisation of poly(ethylene naphthalene-2,6-dicarboxylate) and ring-opening polymerisations of the cyclic oligomers obtained. J Mater Chem 10:1533–1537

    Article  CAS  Google Scholar 

  17. Youk JH, Boulars A, Kambour RP, Macknight WJ (2000) Polymerization of ethylene terephthalate cyclic oligomers with a cyclic dibutyltin initiator. Macromolecules 33:3600–3605

    Article  CAS  Google Scholar 

  18. Kamau SD, Hodge P, Helliwell M (2003) Cyclo-depolymerization of poly(propylene terephthalate): some ring-opening polymerizations of the cyclic oligomers produced. Polym Adv Technol 14:492–501

    Article  CAS  Google Scholar 

  19. Hodge P, Colquhoun HM (2005) Recent work on entropically-driven ring-opening polymerizations: some potential applications. Polym Adv Technol 16:84–94

    Article  CAS  Google Scholar 

  20. Kamau SD, Hodge P, Williams RT, Stagnaro P, Conzatti L (2008) High throughput synthesis of polyesters using entropically driven ring-opening polymerizations. J Comb Chem 10:644–654

    Article  CAS  Google Scholar 

  21. Burch RR, Lustig SR, Spinu M (2000) Synthesis of cyclic oligoesters and their rapid polymerization to high molecular weight. Macromolecules 33:5053–5064

    Article  CAS  Google Scholar 

  22. Ishak ZA, Gotus KG, Karger-Kocsis J (2006) On the in-situ polymerization of cyclic butylene terephthalate oligomers: DSC and rheological studies. Polym Eng Sci 46:743–750

    Article  Google Scholar 

  23. Tripathy AR, Elmoumni A, Winter HH, Macknight WJ (2005) Effects of catalyst and polymerization temperature on the in-situ polymerization of cyclic poly(butylene terephthalate) oligomers for composite applications. Macromolecules 38:709–715

    Article  CAS  Google Scholar 

  24. Harsch M, Karger-Kocsis J, Apostolov AA (2008) Crystallization-induced shrinkage, crystalline, and thermomechanical properties of in situ polymerized cyclic butylene terephthalate. J Appl Polym Sci 108:1455–1461

    Article  CAS  Google Scholar 

  25. Hakme C, Stevenson I, Maazouz A, Cassagnau P, Boiteux G, Seytre G (2007) In situ monitoring of cyclic butylene terephtalate polymerization by dielectric sensing. J Non-Cryst Solids 353:4362–4365

    Article  CAS  Google Scholar 

  26. Zhang JQ, Wang ZB, Wang BJ, Gou QT, Zhang JW, Zhou J, Li Y, Chen P, Gu Q (2013) Living lamellar crystal initiating polymerization and brittleness mechanism investigations based on crystallization during the ring-opening of cyclic butylene terephthalate oligomers. Polym Chem 4:1648–1656

    Article  CAS  Google Scholar 

  27. Abt T, Sánchez-Soto M, Martínez de Ilarduya A (2012) Toughening of in situ polymerized cyclic butylene terephthalate by chain extension with a bifunctional epoxy resin. Eur Polym J 48:163–171

    Article  CAS  Google Scholar 

  28. Abt T, Martínez de Ilarduya A, Bou JJ, Sánchez-Soto M (2013) Isocyanate toughened pCBT: reactive blending and tensile properties. Express Polym Lett 7:172–185

    Article  CAS  Google Scholar 

  29. Chen HL, Yu W, Zhou CX (2012) Entropically-driven ring-opening polymerization of cyclic butylene terephthalate: rheology and kinetics. Polym Eng Sci 52:91–101

    Article  Google Scholar 

  30. Baets J, Godara A, Devaux J, Verpoest I (2010) Toughening of isothermally polymerized cyclic butylene terephthalate for use in composites. Polym Degrad Stab 95:346–352

    Article  CAS  Google Scholar 

  31. Baets J, Godara A, Devaux J, Verpoest I (2008) Toughening of polymerized cyclic butylene terephthalate with carbon nanotubes for use in composites. Compos Part A-Appl S 39:1756–1761

    Article  Google Scholar 

  32. Baets J, Dutoit M, Devaux J, Verpoest I (2008) Toughening of glass fiber reinforced composites with a cyclic butylene terephthalate matrix by addition of polycaprolactone. Compos Part A-Appl S 39:13–18

    Article  Google Scholar 

  33. Parton H, Baets J, Lipnik P, Goderis B, Devaux J, Verpoest I (2005) Properties of poly(butylene terephthatlate) polymerized from cyclic oligomers and its composites. Polymer 46:9871–9880

    Article  CAS  Google Scholar 

  34. Hong SC, Lee SS (2013) Temperature-dependent decyclopolymerization of cyclic oligomers and the implication on destructuring layered nanosheets for nanocomposite reinforcement. Compos Sci Technol 86:170–176

    Article  CAS  Google Scholar 

  35. Wu FM, Xie TX, Yang GS (2010) Characterization of PBT/POSS nanocomposites prepared by in situ polymerization of cyclic poly(butylene terephthalate) initiated by functionalized POSS. J Polym Sci Pol Phys 48:1853–1859

    Article  CAS  Google Scholar 

  36. Jiang ZY, Siengchin S, Zhou LM, Steeg M, Karger-Kocsis J (2009) Poly (butylene terephthalate)/silica nanocomposites prepared from cyclic butylene terephthalate. Compos Part A-Appl S 40:273–278

    Article  Google Scholar 

  37. Chen HL, Huang AW, Yu W, Zhou CX (2013) Effect of thermally reduced graphite oxide (TrGO) on the polymerization kinetics of poly(butylene terephthalate) (pCBT)/TrGO nanocomposites prepared by in situ ring-opening polymerization of cyclic butylene terephthalate. Polymer 54:1603–1611

    Article  CAS  Google Scholar 

  38. Noh YJ, Pak SY, Hwang SH, Hwang JY, Kim SY, Youn JR (2013) Enhanced dispersion for electrical percolation behavior of multi-walled carbon nanotubes in polymer nanocomposites using simple powder mixing and in situ polymerization with surface treatment of the fillers. Compos Sci Technol 89:29–37

    Article  CAS  Google Scholar 

  39. Song JB, Zhang WB, Yang WB, Xu JF, Lai JJ (2014) Rheological properties, morphology, mechanical properties, electrical resistivity and EMI SE of cyclic butylene terephthalate/graphite/carbon black composites. J Polym Res 21:556

    Article  Google Scholar 

  40. Samsudin SA, Kukureka SN, Jenkins MJ (2012) Miscibility in cyclic poly(butylene terephthalate) and styrene maleimide blends prepared by solid-dispersion and in situ polymerization of cyclic butylene terephthalate oligomers within styrene maleimide. J Appl Polym Sci 126:290–297

    Article  Google Scholar 

  41. Tripathy AR, Chen WJ, Kukureka SN, MacKnight WJ (2003) Novel poly(butylene terephthalate)/poly(vinyl butyral) blends prepared by in situ polymerization of cyclic poly(butylene terephthalate) oligomers. Polymer 44:1835–1842

    Article  CAS  Google Scholar 

  42. Tripathy AR, Farris RJ, MacKnight WJ (2007) Novel fire resistant matrixes for composites from cyclic poly(butylene terephthalate) oligomers. Polym Eng Sci 47:1536–1543

    Article  CAS  Google Scholar 

  43. Tripathy AR, MacKnight WJ, Kukureka SN (2004) In-situ copolymerization of cyclic poly(butylene terephthalate) oligomers and is an element of-caprolactone. Macromolecules 37:6793–6800

    Article  CAS  Google Scholar 

  44. Chen JY, Huang WC, Xu QZ, Tu YF, Zhu XL (2013) PBT-b-PEO-b-PBT triblock copolymers: synthesis, characterization and double-crystalline properties. Polymer 54:6725–6731

    Article  CAS  Google Scholar 

  45. Fakirov S, Gogevo T (1990) Poly(ether/ester)s based on poly-(butylene terephthalate) and poly(ethylene glycol), 2 Effect of polyether segment length. Makromol Chem 191:615–624

    Article  CAS  Google Scholar 

  46. Wang M, Zhang L, Ma D (1999) Degree of microphase separation in segmented copolymers based on poly(ethylene oxide) and poly(ethylene terephthalate). Eur Polym J 35:1335–1343

    Article  CAS  Google Scholar 

  47. Saint-Loup R, Jeanmaire T, Robin JJ, Boutevin B (2003) Synthesis of (polyethylene terephthalate/poly epsilon-caprolactone) copolyesters. Polymer 44:3437–3449

    Article  CAS  Google Scholar 

  48. Matusinović Z, Rogošić M, Mencer HJ (2005) A correlation of the limiting viscosity number, molecular mass and composition of statistical linear styrene–methyl methacrylate copolymers. Eur Polym J 41:2934–2944

    Article  Google Scholar 

  49. Wu WQ, Abliz D, Jiang BY, Ziegmann G, Meiners D (2014) A novel process for cost effective manufacturing of fiber metal laminate with textile reinforced pCBT composites and aluminum alloy. Compos Struct 108:172–180

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junrong Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Yu, J., Wang, Y. et al. Effect of hard segment length on the properties of poly(ether ester) elastomer prepared by one pot copolymerization of poly(ethylene glycol) and cyclic butylene terephthalate. J Polym Res 22, 193 (2015). https://doi.org/10.1007/s10965-015-0840-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0840-1

Keywords

Navigation