Skip to main content
Log in

Investigation of nanocomposite membranes based on crosslinked poly(vinyl alcohol)–sulfosuccinic acid ester and hexagonal boron nitride

Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Hexagonal boron nitride (hBN) has received a great deal of attention from the scientific community owing to its distinctive mechanical properties, chemical stability, electrical features, and thermal stability. This work reports the preparation and characterization of novel anhydrous proton-conducting nanocomposite membranes based on poly(vinyl alcohol) (PVA), sulfosuccinic acid (SSA), and hBN. The proton conductivities of composite membranes were examined as a function of hBN composition and temperature. SSA was used as a sulfonating agent to obtain a crosslinked structure. hBN was incorporated into the PVA–SSA matrix as a proton transfer agent and nanofiller additive. The obtained membranes were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), water uptake, methanol permeability, and impedance spectroscopy. The semicrystalline nature of the composites was confirmed by X-ray investigation. The PVA–SSA–15hBN showed a maximum proton conductivity of 0.028 S cm−1 at 150 °C under anhydrous conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Madakbas S, Cakmakcı E, Kahraman MV (2013) Thermochim Acta 552:1–4

    Article  CAS  Google Scholar 

  2. Salles V, Bernard S, Chiriac R, Miele P (2012) J Eur Ceram Soc 32:1867–1871

    Article  CAS  Google Scholar 

  3. Kemaloglu S, Ozkoc G, Aytac A (2010) Thermochim Acta 499:40–47

    Article  CAS  Google Scholar 

  4. Yu J, Huang X, Wu C, Wu X, Wang G, Jiang P (2012) Polymer 53:471–480

    Article  CAS  Google Scholar 

  5. Lin Li T, Lien S, Hsu C (2010) J Phys Chem B 118:6825–6829

    Google Scholar 

  6. Taguet A, Cassagnau P, Lopez-Cuesta JM (2014) Prog Polym Sci 39:1526–1563

    Article  CAS  Google Scholar 

  7. Lahiri D, Rouzaud F, Richard T, Keshri AK, Bakshi SR, Kos L, Agarwal A (2010) Acta Biomater 6:3524–3533

    Article  CAS  Google Scholar 

  8. Hong JP, Yoon SW, Hwang T, Oh JS, Hong SC, Lee Y, Nam JD (2012) Thermochim Acta 537:70–75

    Article  CAS  Google Scholar 

  9. Raman C, Meneghetti P (2008) Plast Addit Compd 10:26–29

    Article  CAS  Google Scholar 

  10. Joni IM, Balgis R, Ogi T, Waki TI, Okuyama K (2011) Colloid Surf A 388:49–58

    Article  CAS  Google Scholar 

  11. Sinirlioglu D, Muftuoglu AE, Bozkurt A (2014) J Polym Res 21:526

    Article  Google Scholar 

  12. Celik SU, Bozkurt A, Hosseini SS (2012) Prog Polym Sci 37:1265–1291

    Article  CAS  Google Scholar 

  13. Sinirlioglu D, Muftuoglu AE, Golcuk K, Bozkurt A (2014) J Polym Sci Part A 52:1885–1897

    Article  CAS  Google Scholar 

  14. Sinirlioglu D, Celik SU, Muftuoglu AE, Bozkurt A (2015) Polym Eng Sci 255:260–269

    Article  Google Scholar 

  15. Boroglu MS, Celik SU, Bozkurt A, Boz I (2011) Polym Composite 32:1625–1632

    Article  CAS  Google Scholar 

  16. Lebrun L, Da Silva E, Metayer M (2002) J Appl Polym Sci 84:1572–1580

    Article  CAS  Google Scholar 

  17. Lebrun L, Follain N, Metayer M (2004) Electrochim Acta 50:985–993

    Article  CAS  Google Scholar 

  18. Choi YJ, Park JM, Yeon KH, Moon SH (2005) J Membr Sci 250:295–304

    Article  CAS  Google Scholar 

  19. Zhang QG, Liu QL, Zhu AM, Xiong Y, Ren L (2009) J Membr Sci 335:68–75

    Article  CAS  Google Scholar 

  20. Kim DS, Park HB, Rhim JW, Lee YM (2005) Solid State Ionics 176:117–126

    Article  CAS  Google Scholar 

  21. Kovtyukhova NI, Wang Y, Lv R, Terrones M, Crespi VH, Mallouk TE (2013) J Am Chem Soc 135:8372–8381

    Article  CAS  Google Scholar 

  22. Boroglu MS, Celik SU, Bozkurt A, Boz I (2011) J Membr Sci 375:157–164

    Article  CAS  Google Scholar 

  23. Boroglu MS, Celik SU, Bozkurt A, Boz I (2013) J Mater Res 28:1458–1465

    Article  CAS  Google Scholar 

  24. Boroglu MS, Celik SU, Bozkurt A, Boz I (2013) Polym Eng Sci 53:153–158

    Article  CAS  Google Scholar 

  25. Huang MT, Ishida H (2005) Surf Interface Anal 37:621–627

    Article  CAS  Google Scholar 

  26. Zhi C, Bando Y, Tang C, Kuwahara H, Golberg D (2009) Adv Mater 21:2889–2893

    Article  CAS  Google Scholar 

  27. Dibandjo P, Bois L, Chassagneux F, Cornu D, Letoffe JM, Toury B (2005) Adv Mater 17:571–574

    Article  CAS  Google Scholar 

  28. Al-Jawhari HA, Baeraky TA, Afandi YH (2011) Int J Eng Technol 11:87–90

    Google Scholar 

  29. Mansur HS, Orefice RL, Mansur AAP (2004) Polymer 45:7193–7202

    Article  CAS  Google Scholar 

  30. Rhim JV, Park HB, Lee CS, Jun JH, Kim DS, Lee YM (2004) J Membr Sci 238:143–151

    Article  CAS  Google Scholar 

  31. Aslan A, Bozkurt A (2014) Solid State Ionics 255:89–95

    Article  CAS  Google Scholar 

  32. Munakata H, Chiba H, Kanamura K (2005) Solid State Ionics 176:2445–2450

    Article  CAS  Google Scholar 

  33. Gasa JV, Boob S, Weiss RA, Shaw MT (2006) J Membr Sci 269:177–186

    Article  CAS  Google Scholar 

  34. Mahrenia A, Mohamad AB, Kadhum AAH, Daud WRW, Iyuke SE (2009) J Membr Sci 327:32–40

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Fatih University-BINATAM center for SEM and XRD measurements. This work was supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) under contact number 112M488.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayhan Bozkurt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tutgun, M.S., Sinirlioglu, D., Celik, S.U. et al. Investigation of nanocomposite membranes based on crosslinked poly(vinyl alcohol)–sulfosuccinic acid ester and hexagonal boron nitride. J Polym Res 22, 47 (2015). https://doi.org/10.1007/s10965-015-0678-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0678-6

Keywords

Navigation