Skip to main content
Log in

Synthesis, characterization and morphology of polyanthranilic acid micro- and nanostructures

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polyanthranilic acid (PANA) nanofibres, nanorods, nanospheres and microspheres were synthesized by polymerization of anthranilic acid using ammonium peroxydisulfate (APS) as oxidant without hard or soft templates. Polymerization of anthranilic acid was carried out in aqueous solutions of strong (hydrochloric) and weak (acetic) acids. The influence of synthetic parameters such as oxidant, initiator, dopant acid and its concentration, redox initiator, and reaction medium on the morphology and particle size of PANA have been investigated. PANA nanofibres and nanorods were obtained via redox polymerization of anthranilic acid initiated by FeSO4 as redox initiator. PANA nanospheres and nanofibres were also obtained when used aromatic amines as initiators. When polymerization carried out in the solution of weak (acetic) acid the microsphere morphology obtained and the particle size increase with increasing the concentration of weak acid. PANA nanorods were obtained also by polymerization of anthranilic in ethanol-water mixture unlike interfacial polymerization of anthranilic acid (in chloroform-water) that give PANA microspheres. The morphology and particle size of PANA was studied by scanning electron microscope (SEM) and transmission electron microscope (TEM). The average diameter of nanostructures obtained ≤100 nm. The optical bandgap of microspheres and nanofibers polymeric products were determined using UV-vis spectroscopic technique and found to be 2.0 eV and 1.6 eV, respectively. The bandgap decreased with decreasing the particle size. IR spectrum confirmed the structure of PANA nanofibres (synthesized with FeSO4 as redox initiator) in emeraldine form. The thermal stability of polymer obtained was determined by thermal gravimetric analysis (TGA). The molecular weight was determined also by gel permeation chromatography (GPC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schmid G (2004) Nanoparticles: From theory to applications. Willey-VCH Publishers, Weinheim

    Google Scholar 

  2. Geckeler KE, Rosenberg E (eds) (2006) Functional nanomaterials. American Scientific Puplishers, Valencia

    Google Scholar 

  3. Hosokawa M, Nogi K, Yokoyama T (2007) Nanoparticle technology handbook. Elseiver, Amsterdam

    Google Scholar 

  4. Geckeler KE, Nishide H (eds) (2010) Advanced nanomaterials. Willey-VCH Publishers, Weinheim

    Google Scholar 

  5. Wang X, Summers CJ, Wang ZL (2004) Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett 4:423–426

    Article  CAS  Google Scholar 

  6. Jang JS, Oh JH (2002) Novel crystalline supramolecular assemblies of amorphous polypyrrole nanoparticles through surfactant templating. Chem Commun 19:2200–2201

    Article  Google Scholar 

  7. Fudouzi H, Xia Y (2003) Photonic papers and inks: color writing with colorless materials. Adv Mater 15:892–896

    Article  CAS  Google Scholar 

  8. Brahim S, Narinesingh D, Elie GA (2001) Amperometric determination of cholesterol in serum using a biosensor of cholesterol oxidase contained within a polypyrrole-hydrogel membrane. Anal Chim Acta 448:27–36

    Article  CAS  Google Scholar 

  9. Zhang Q, Chuang KT (2001) Adsorption of organic pollutants from effluents of a kraft pulp mill on activated carbon and polymer resin. Adv Environ Res 5:251–258

    Article  CAS  Google Scholar 

  10. Wu MS, Wen TC, Gopalan A (2002) In situ UV-visible spectroelectrochemical studies on the copolymerization of diphenyl amine with anthranilic acid. Mater Chem Phys 74:58–65

    Article  CAS  Google Scholar 

  11. Camalet JL, Lacroix JC, Aeiyach S, Chane-ching K, Lacaze PC (1998) Electrosynthesis of adherent polyaniline films on iron and mild steel in aqueous oxalic acid medium. Synth Met 93:133–142

    Article  CAS  Google Scholar 

  12. Salaneck WR, Huang WS, Lundstrom I, MacDiarmid AG (1986) A two dimensional-surface ‘state digram’ for polyaniline. Synth Met 13:291–297

    Article  CAS  Google Scholar 

  13. Paul EW, Ricco AJ, Wrighton WS (1985) Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline-based microelectronic devices. J Phys Chem 89:1441–1447

    Article  CAS  Google Scholar 

  14. Oyama N, Ohsaka T (1987) Electrochemical properties of the polymer films prepared by electrochemical polymerization of aromatic compounds with amino groups. Synth Met 18:375–380

    Article  CAS  Google Scholar 

  15. Carlin CM, Kepley LJ, Bard AJ (1985) Polymer films on electrodes. XVI. In situ ellipsometric measurements of polybipyrizine, polyaniline, and polyvinylferrocence films. J Electrochem Soc 132:353–359

    Article  CAS  Google Scholar 

  16. Lofton EP, Thackeray JW, Wrighton MS (1986) Amplification of electrical signals with molecule-based transistors: power amplification up to kilohertz frequency and factors limiting higher frequency operation. J Phys Chem 90(23):6080–6083

    Article  CAS  Google Scholar 

  17. Kitani A, Yano J, Sasaki K (1986) ECD materials for the three primary colors developed by polyanilines. J Electroanal Chem 209(1):227–232

    Article  CAS  Google Scholar 

  18. Armes SP, Miller JF (1988) Optimum reaction conditions for the polymerization of aniline in aqueous solution by ammonium persulfate. Synth Met 22:385–393

    Article  CAS  Google Scholar 

  19. Nguyen MT, Diaz AF (1995) Water-soluble poly(aniline-co-anthranilic acid) copolymers. Macromolecules 28:3411–4315

    Article  CAS  Google Scholar 

  20. Gupta B, Prakash R (2011) Synthesis of functionalized conducting polymer “polyanthranilic acid” using various oxidizing agents and formation of composites with PVC. Polym Adv Technol 22:1982–1988

    Article  CAS  Google Scholar 

  21. Singh AK, Joshi L, Gupta B, Kumar A, Prakash R (2011) Electronic properties of soluble functionalized polyaniline (polyanthranilic acid)-multiwalled carbon nanotube nanocomposites: influence of synthesis methods. Synth Met 161:481–488

    Article  CAS  Google Scholar 

  22. Sapurina I, Stejskal J (2008) The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym Int 57:1295–1325

    Article  CAS  Google Scholar 

  23. Huang J, Kaner RB (2004) A general chemical route to polyaniline nanofibres. J Am Chem Soc 126:851–855

    Article  CAS  Google Scholar 

  24. Li G, Zhang C, Li Y, Peng H, Chen K (2010) Rapid polymerization initiated by redox initiator for the synthesis of polyaniline nanofibres. Polymer 51:1934–1939

    Article  CAS  Google Scholar 

  25. Stejskal J, Sapurina I, Trchova M, Konyushenko EN, Holler P (2006) The genesis of polyaniline nanotubes. Polymer 47(2006):8253–8262

    Article  CAS  Google Scholar 

  26. Konyushenko EN, Stejskal J, Sedenkova I, Trchova M, Sapurina I, Cieslar M, Prokes J (2006) Polyaniline nanotubes: conditions of formation. Polym Int 55:31–39

    Article  CAS  Google Scholar 

  27. Jamal R, Abdiryim T, Ding Y, Nurulla I (2008) Comparative studies of solid-state synthesized poly(o-methoxyaniline) doped with organic sulfonic acids. J Polym Res 15:75–82

    Article  CAS  Google Scholar 

  28. Anu Prathap MU, Srivastava R (2011) Morphological controlled synthesis of micro-/nano-polyaniline. J Polym Res 18:2455–2467

    Article  Google Scholar 

  29. Haung WS, Humphrey BD, MacDiarmid AG (1986) Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. J Chem Soc Faraday Trans 1(82):2385–2400

    Google Scholar 

  30. Odian G (2004) Principles of polymerization, 4th edn. Wiley, New Jersey, p 216

    Book  Google Scholar 

  31. Tran HD, Wang Y, D’Arcy JM, Kaner RB (2008) Toward an understanding of the formation of conducting polymer nanofibers. ACS Nano 2(9):1841–1848

    Article  CAS  Google Scholar 

  32. Surwade SP, Manohar N, Manohar SK (2009) Origin of bulk nanoscale morphology in conducting polymers. Macromolecules 42:1792–1795

    Article  CAS  Google Scholar 

  33. D’Aprano G, Leclerc M, Zotti G (1996) Electrochemistry of phenyl-N-capped aniline oligomers. Evaluation of optical and electrochemical properties of ideal polyaniline. Synth Met 82:59–61

    Article  Google Scholar 

  34. Li D, Kaner RB (2006) Shape and aggregation control of nanoparticles: not Shaken, not Stirred. J Am Chem Soc 128:968–975

    Article  CAS  Google Scholar 

  35. Liu W, Cholli AL, Nagarajan R, Kumar J, Tripathy SK, Bruno FF, Samuelson L (1999) The Role of template in the enzymatic synthesis of conducting polyaniline. J Am Chem Soc 121:11345–11355

    Article  CAS  Google Scholar 

  36. Han J, Song G, Guo R (2006) A Facile solution route for polymeric hollow spheres with controllable size. Adv Mater 18:3140–3144

    Article  CAS  Google Scholar 

  37. Yakuphanoglu F, Basaran E, Senkal BF, Sezer E (2006) Electrical and optical properties of an organic semiconductor based on polyaniline prepared by emulsion polymerization and fabrication of Ag/polyaniline/n-Si Schottky diode. J Phys Chem B 110(34):16908–16913

    Article  CAS  Google Scholar 

  38. Quillard S, Louarn G, Buisson JP, Boyer M, Lapkowski M, Pron A (1997) Vibrational spectroscopic studies of the isotope effects in polyaniline. Synth Met 84:805–806(2)

    Article  CAS  Google Scholar 

  39. Hu H, Cadenas JL, Saniger JM, Nair PK (1998) Electrical conducting polyaniline- poly(acrylic acid) blends. Polym Int 45:262–270

    Article  CAS  Google Scholar 

  40. Roy BC, Gupta MD, Bhoumic L, Roy JK (2002) Spectroscopic investigation of water-soluble polyaniline copolymers. Synth Met 130:27–33

    Article  CAS  Google Scholar 

  41. Tauc J (1974) Amorphous and liquid semiconductors. Plenum Press, London

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Khalil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalil, A.A., Shaaban, A.F., Azab, M.M. et al. Synthesis, characterization and morphology of polyanthranilic acid micro- and nanostructures. J Polym Res 20, 142 (2013). https://doi.org/10.1007/s10965-013-0142-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0142-4

Keywords

Navigation