Skip to main content
Log in

Dimethyl silane-modified silica in polydimethylsiloxane as gas permeation mixed matrix membrane

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The gas transport behaviors of O2, N2, CO2 and CH4 were investigated in mixed matrix membranes (MMMs) prepared from polydimethylsiloxane (PDMS) filled with surface functionalized silica (SiO2) nanoparticles. SiO2 surface modification was performed through silanization using chlorodimethyl silane. FTIR confirmed the presence of dimethyl silane on SiO2 (Si-DMS) whereas elemental analysis showed 94.2% successful modification. Thermal gravimetric analysis revealed the improved thermal stabilities of PDMS MMMs. Field emission scanning electron microscopy revealed the uniform distribution of Si-DMS within the membrane. The effect of Si-DMS in gas permeabilities (P) was in contrast to the Maxwell model prediction. Enhanced P values of all gases in PDMS MMMs (as compared to pure PDMS) were associated to the improvement in diffusion coefficients (Dm) despite the reduction in gas solubility coefficients. The increase in Dm values was attributed to the higher free volumes in PDMS MMMs. However, slight declines (<8% of pure PDMS) in selectivities were observed. Overall, PDMS MMMs have improved performances due to enhanced gas permeabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

P:

Permeability

αA/B :

Ideal selectivity

J:

Gas flux

l:

Thickness

p1 :

Pressure at the feed stream

p2 :

Pressure at the permeate stream

PA :

Permeability of component A

PB :

Permeability of component B

Dm :

Diffusion coefficient

ts :

Steady-state saturation time

Hfumed silica :

H content of fumed SiO2

SA:

BET surface area

NA :

Avogadro constant

HDMS :

H removed in SiO2 due to silanization

mDMS :

Mole of DMS attached during silanization

MWC :

Molecular weight of carbon

D:

Diffusivity

S:

Solubility coefficient

PMMM :

Permeability of MMM

Ppure :

Permeability of pure polymeric membrane

f :

Volume fraction of the filler

SMMM :

Solubility coefficient of MMM

Spure :

Solubility coefficient of pure polymeric membrane

Dmo :

Diffusion coefficient in pure PDMS

FFV:

Fractional free volume

ρMMM :

Measured density of MMM

mSi-DMS :

Weight fraction of Si-DMS in MMM

ρPDMS :

Measured density of PDMS

ρSi-DMS :

Measured density of Si-DMS

V0 :

Zero-point volume of PDMS

VPDMS :

Specific volume of PDMS

References

  1. Baker RW (2002) Future directions of membrane gas separation technology. Ind Eng Chem Res 41:1393–1411

    Article  CAS  Google Scholar 

  2. Chung TS, Jiang LY, Li Y, Kulprathipanja S (2007) Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog Polym Sci 32:483–507

    Article  CAS  Google Scholar 

  3. Moore TT, Koros WJ (2005) Non-ideal effects in organic–inorganic materials for gas separation membranes. J Mol Struct 739:87–98

    Article  CAS  Google Scholar 

  4. Zimmerman CM, Singh A, Koros WJ (1997) Tailoring mixed matrix composite membranes for gas separations. J Membr Sci 145:145–154

    Article  Google Scholar 

  5. Smaïhi M, Jermoumi T, Marignan J, Noble RD (1996) Organic-inorganic gas separation membranes: preparation and characterization. J Membr Sci 116:211–220

    Article  Google Scholar 

  6. Merkel TC, Freeman BD, Spontak RJ, He Z, Pinnau I, Maekin P, Hill AJ (2002) Ultrapermeable, reverse-selective nanocomposite membranes. Science 296:519–522

    Article  CAS  Google Scholar 

  7. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957

    Article  CAS  Google Scholar 

  8. Nunes SP, Schultz J, Peinemann KV (1996) Silicone membranes with silica nanoparticles. J Mater Sci Lett 15:1139–1141

    Article  CAS  Google Scholar 

  9. Gomes D, Nunes SP, Peinemann KV (2005) Membranes for gas separation based on poly (1-trimethylsilyl-1-propyne)-silica nanocomposites. J Membr Sci 246:13–25

    Article  CAS  Google Scholar 

  10. Car A, Stropnik C, Yave W, Peinemann KV (2008) PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation. J Membr Sci 307:88–95

    Article  CAS  Google Scholar 

  11. Yave W, Car A, Peinemann KV, Shaikh MQ, Rätzke K, Faupel F (2009) Gas permeability and free volume in poly(amide-b-ethylene oxide)/polyethylene glycol blend membranes. J Membr Sci 339:177–183

    Article  CAS  Google Scholar 

  12. Barrer RM (1968) In: Crank J, Park GS (eds) Diffusion in polymers. Academic Press, London

    Google Scholar 

  13. Hill RJ (2006) Reverse-selective diffusion in nanocomposite membranes. Phys Rev Lett 96:216001-1–216001-4

    Article  Google Scholar 

  14. Merkel TC, Bondar V, Nagai K, Freeman BD (1999) Hydrocarbon and perfluorocarbon gas sorption in poly(dimethylsiloxane), poly(1-trimethylsilyl-1-propyne), and copolymers of tetrafluoroethylene and 2,2-bis(trifluoromethyl)-4,5-difluoro-1,3-dioxide. Macromolecules 32:370–374

    Article  CAS  Google Scholar 

  15. He Z, Pinnau I, Morisato A (2002) Nanostructured poly(4-methyl-2-pentyne)/silica hybrid membranes for gas separation. Desalination 146:11–15

    Article  CAS  Google Scholar 

  16. Car A, Stropnik C, Peinemann KV (2006) Hybrid membrane materials with different metal-organic frameworks (MOFs) for gas separation. Desalination 200:424–426

    Article  CAS  Google Scholar 

  17. Ahn J, Chung WJ, Pinnau I, Guiver M (2008) Polysulfone/silica nanoparticle mixed matrix membranes for gas separation. J Membr Sci 314:123–133

    Article  CAS  Google Scholar 

  18. Nunes SP, Peinemann KV, Ohlrogge K, Alpers A, Keller M, Pires ATN (1999) Membranes of poly(ether imide) and nanodispersed silica. J Membr Sci 157:219–226

    Article  CAS  Google Scholar 

  19. Li B, Xu D, Zhang X, Jiang Z, Wang Y, Ma J, Dong X, Wu H (2010) Rubbery polymer-inorganic nanocomposite membranes: free volume characteristics on separation property. Ind Eng Chem Res 49:12444–12451

    Article  CAS  Google Scholar 

  20. Merkel TC, Freeman BD, Spontak RJ, He Z, Pinnau I, Maekin P, Hill AJ (2003) Sorption, transport, and structural evidence for enhanced free volume in poly(4-methyl-2-pentyne)/fumed silica nanocomposite membranes. Chem Mater 15:109–123

    Article  CAS  Google Scholar 

  21. Chandak MV, Lin YS, Ji W, Higgins RJ (1998) Sorption and diffusion of volatile organic compounds in polydimethylsiloxane membranes. J Appl Polym Sci 67:165–175

    Article  CAS  Google Scholar 

  22. Pinnau I, He Z (2004) Pure and mixed-gas permeation properties of polydimethylsiloxane for hydrocarbon/methane and hydrocarbon/hydrogen separation. J Membr Sci 244:227–233

    Article  CAS  Google Scholar 

  23. Sadrzadeh M, Shahidi K, Mohammadi T (2010) Synthesis and gas permeation properties of a single layer PDMS membrane. J Appl Polym Sci 117:33–48

    CAS  Google Scholar 

  24. George SC, Thomas S (2001) Transport phenomena through polymeric systems. Prog Polym Sci 26:985–1017

    Article  CAS  Google Scholar 

  25. Tripp CP, Hair ML (1993) Chemical attachment of chlorosilanes to silica: a two-step amine-promoted reaction. J Phys Chem 97:5693–5698

    Article  CAS  Google Scholar 

  26. Yoshinaga K, Yoshida H, Yamamoto Y, Takakura K, Komatsu M (1992) A convenient determination of surface hydroxyl group on silica gel by conversion of silanol hydrogen to dimethylsilyl group with diffuse reflectance FTIR spectroscopy. J Colloid Interface Sci 153:207–211

    Article  CAS  Google Scholar 

  27. Rabek JF (1980) Experimental methods in polymer chemistry, physical principles and applications. Wiley-Interscience, New York

    Google Scholar 

  28. Yeom CK, Kim BS, Lee JM (1999) Precise on-line measurements of permeation transients through dense polymeric membranes using a new permeation apparatus. J Membr Sci 161:55–66

    Article  CAS  Google Scholar 

  29. Efimenko K, Wallace WE, Genzer J (2002) Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J Colloid Interface Sci 254:306–315

    Article  CAS  Google Scholar 

  30. Berdichevsky Y (2004) UV/ozone modification of poly(dimethylsiloxane) microfluidic channels. Sensor Actuat B-Chem 97:402–408

    Article  Google Scholar 

  31. Sigma-Aldrich, Fumed Silica (S5380) Product information, 3 pages, Missouri, USA

  32. Jovanovic JD, Govedarica MN, Dvornic PR, Popovic IG (1998) The thermogravimetric analysis of some polysiloxanes. Polymer Degrad Stabil 61:87–93

    Article  CAS  Google Scholar 

  33. De Sitter K, Winberg P, D’Haen J, Dotremont C, Leysen R, Martens JA, Mullens S, Maurer FHJ, Vankelecom IFJ (2006) Silica filled poly(1-trimethylsilyl-1-propyne) nanocomposite membranes: relation between the transport of gas and structural characteristics. J Membr Sci 278:83–91

    Article  Google Scholar 

  34. Bondi A (1964) Van der waals volumes and radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  35. Becker C, Kutsch B, Krug H, Kaddami H (1998) SAXS and TEM investigations on thermoplastic nanocomposites containing functionalized silica nanoparticles. J Sol-Gel Sci Tech 13:499–502

    Article  CAS  Google Scholar 

  36. Okamato T, Nakamura S (2008) Thermal endurance, electrical insulating, and mechanical properties of hybrid made with poly(dimethylsiloxane) and tetraethoxysilane. Jpn J Appl Phys 47:521–526

    Article  Google Scholar 

  37. Fragiadakis D, Pissis P, Bokobza L (2005) Glass transition and molecular dynamics in poly(dimethylsiloxane)/silica nanocomposites. Polymer 46:6001–6008

    Article  CAS  Google Scholar 

  38. Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 62:165–185

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Mid-Career Research Program (No. 2010–0027608) and by Priority Research Centers Program (No. 2010–0028300) through the National Research Foundation (NRF) of Korea funded by Ministry of Education Science and Technology (MEST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wook-Jin Chung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nisola, G.M., Beltran, A.B., Sim, D.M. et al. Dimethyl silane-modified silica in polydimethylsiloxane as gas permeation mixed matrix membrane. J Polym Res 18, 2415–2424 (2011). https://doi.org/10.1007/s10965-011-9655-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-011-9655-x

Keywords

Navigation