Skip to main content
Log in

Effect of chemical structure of aromatic dianhydrides on the thermal, mechanical and electrical properties of their terpolyimides with 4,4′-oxydianiline

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Aromatic terpolyimides were synthesized by the reaction of 3,3′,4,4′-oxydiphthalicdianhydride(ODPA), 3,3′,4,4′-biphenyldianhydride(BPDA) and 3,3′,4,4′-benzophenonetetracaboxylicdianhydride(BTDA) with 4,4′-oxydianiline(ODA) via thermal imidization with the view to enhance their tensile properties without compromising thermal properties compared to their homo and copolyimides. Their films were characterized by FTIR, TGA, DSC and XRD. Their FTIR spectra established formation of polyimide by the characteristic vibrations at 1375cm−1(C-N stretch) and 1113 cm−1(imide ring deformation). TGA results showed imidization of residual polyamide acid close to 250 °C and decomposition of polyimides at about 540 °C. XRD results showed amorphous nature for all terpolyimides. Their tensile strength and tensile modulus were higher than either homo or copolyimides. Incorporation of BPDA, without bridging groups between the aromatic rings into the backbone of ODPA/BTDA-ODA is suggested as the cause for such an enhancement. Such terpolyimide can find application as adhesives in making flexible single/multilayer polyimide metal-clad laminates in flexible printed circuits and tape automated bonding applications. In addition, the terpolyimide, BPDA/BTDA/ODPA-ODA (mole ratio 0.5:0.25:0.25:1), showed low dielectric constant (3.52) as BPDA could offer slight rigidity by which the orientation of polar groupings could be reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mazoniene E, Bendoraitiene J, Peciulyte L, Diliunas S, Zemaitaitis A (2006) (Co)polyimides from commonly used monomers, and their nanocomposites. Prog Solid State Chem 34:201–211

    Article  CAS  Google Scholar 

  2. Hergenrother PM, Watsonb KA, Smith JG Jr, Connella JW, Yokota R (2004) Copolyimides from 2, 3, 3′, 4′-biphenyltetracarboxylic dianhydride and pyromellitic dianhydride with 4, 4′-oxydianiline. Polymer 45:5441–5449

    Article  CAS  Google Scholar 

  3. Lindeberg M, Hjort K (2003) Interconnected nanowire clusters in polyimide for flexible circuits and magnetic sensing applications. Sens Actuators A 105:150–161

    Article  Google Scholar 

  4. Saeed MB, Zhan M-S (2007) Adhesive strength of nano-size particles filled thermoplastic polyimides. Part-I: multi-walled carbon nano-tubes (MWNT)–polyimide composite films. Int J Adhes Adhes 27:306–318

    Article  CAS  Google Scholar 

  5. Thompson CM, Connell JW, Hergenrother PM (2002) Adhesive and composite properties of a new phenylethynyl terminated imide. NASA tech. reports server 2009-05-20: 20030013638

  6. Sukhanova TE, Baklagina YuG, Kudryavtsev VV, Maricheva TA, Lednicky F (1999) Morphology, deformation and failure behavior of homo- and copolyimide fibres 1. Fibres from 4, 4′-oxybis (phthalic anhydride) (DPhO) and p-phenylenediamine (PPh) or/and 2, 5-bis (4-aminophenyl)-pyrimidine (2,5PRM). Polymer 40:6265–6276

    Article  CAS  Google Scholar 

  7. Williams MK, Holland DB, Melendez O, Weiser ES, Brenner JR, Nelson GL (2005) Aromatic polyimide foams: factors that lead to high fire performance. Polym Degrad Stab 88(1):20–27

    Article  CAS  Google Scholar 

  8. Shao Lu, Chung T-S, Wensley G, Goh SH, Pramoda KP (2004) Casting solvent effects on morphologies, gas transport properties of a novel 6FDA/PMDA–TMMDA copolyimide membrane and its derived carbon membranes. J Membr Sci 244:77–87

    Article  CAS  Google Scholar 

  9. Einsla BR, Kim YS, Hickner MA, Hong Y-T, Hill ML, Pivovar BS, McGrath JE (2005) Sulfonated naphthalene dianhydride based polyimide copolymers for proton-exchange-membrane fuel cells II. Membrane properties and fuel cell performance. J Membr Sci 255:141–148

    Article  CAS  Google Scholar 

  10. Yang L, Kang Y, Wang Y, Xu L, Kita H, Okamoto K-I (2005) Synthesis of crown ether-containing copolyimides and their pervaporation properties to benzene/cyclohexane mixtures. J Membr Sci 249:33–39

    Article  CAS  Google Scholar 

  11. Blázquez JA, Iruin JJ, Eceolaza S, Marestin C, Mercier R, Mecerreyes D, Miguel O, Vela A, Marcilla R (2005) Solvent and acidification method effects in the performance of new sulfonated copolyimides membranes in PEM-fuel cells. J Power Sources 151:63–68

    Article  Google Scholar 

  12. Chang B-J, Chang Y-H, Kim D-K, Kim J-H, Lee S-B (2005) New copolyimide membranes for the pervaporation of trichloroethylene from water. J Membr Sci 248:99–107

    Article  CAS  Google Scholar 

  13. Compton J, Thompson D, Kranbuehl D, Ohl S, Gain O, David L, Espuche E (2006) Hybrid films of polyimide containing in situ generated silver or palladium nanoparticles: effect of the particle precursor and of the processing conditions on the morphology and the gas permeability. Polymer 47(15):5303–5313

    Article  CAS  Google Scholar 

  14. Bi H, Wang J, Chen S, Hu Z, Gao Z, Wang L, Okamoto K-I (2010) Preparation and properties of cross-linked sulfonated poly(arylene ether sulfone)/sulfonated polyimide blend membranes for fuel cell application. J Membr Sci 350(1-2):109–116

    Article  CAS  Google Scholar 

  15. Lv Y-Y, Wu J, Xu Z-K (2010) Colorimetric and fluorescent sensor constructing from the nanofibrous membrane of porphyrinated polyimide for the detection of hydrogen chloride gas. Sens Actuators B: Chem 148(1):233–239

    Article  Google Scholar 

  16. Dasgupta B, Sen SK, Banerjee S (2010) Aminoethylaminopropylisobutyl POSS—Polyimide nanocomposite membranes and their gas transport properties. Mater Sci Eng B 168(1–3):30–35

    Article  CAS  Google Scholar 

  17. Nguyen T, Wang X (2010) Multifunctional composite membrane based on a highly porous polyimide matrix for direct methanol fuel cells. J Power Sources 195(4):1024–1030

    Article  CAS  Google Scholar 

  18. Jin-tian Y, Bin J, Wei H, Yong-feng Z, De-yue Y (2007) Synthesis and characterization of organsoluble polyimide and copolyimides from alicyclic dianhydride. Chin J Polym Sci 25(4):409–417

    Article  Google Scholar 

  19. Yang Jin-tian, Huang Wei, Zhou Yong-feng, Yan De-yue, Wang Xiao-hang (2005) Synthesis and characterization of novel organosoluble aromatic copolyimides, e-Polymers, 066

  20. Hsiao S-H, Chen Y-J (2002) Structure–property study of polyimides derived from PMDA and BPDA dianhydrides with structurally different diamines. Eur Polym J 38(4):815–828

    Article  CAS  Google Scholar 

  21. Park HB, Kim YK, Lee JM, Lee SY, Lee YM (2004) Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes. J Membr Sci 229(1–2):117–127

    Article  CAS  Google Scholar 

  22. Pan R, Liu X, Zhang A, Gu Y (2007) Molecular simulation on structure–property relationship of polyimides with methylene spacing groups in biphenyl side chain. Comput Mater Sci 39(4):887–895

    Article  CAS  Google Scholar 

  23. Chen JP, Natansohn A (1999) Synthesis and characterization of novel carbazole-containing soluble polyimides. Macromolecules 32(10):3171–3177

    Article  CAS  Google Scholar 

  24. Xu S, Yang M, Cao S (2006) A fluorescent copolyimide containing perylene, fluorine and oxadiazole units in the main chain. React Funct Polym 66:471–478

    Article  CAS  Google Scholar 

  25. Nilakshi Sadavarte V, Mahadeo Halhalli R, Avadhani CV, Wadgaonkar PP (2009) Synthesis and characterization of new polyimides containing pendent pentadecyl chains. Eur Polym J 45(2):582–589

    Article  Google Scholar 

  26. Wang C, Zhao X, Li G, Jiang J (2009) High solubility and optical transparency of novel polyimides containing 3, 3′, 5, 5′-tetramethyl pendant groups and 4-tert-butyltoluene moiety. Polym Degrad Stab 94(9):1526–1532

    Article  CAS  Google Scholar 

  27. Gagliani John, Lee Raymond (1982) Terpolyimides prepared from tetracarboxylic acid esters and combinations of heterocyclic, aromatic, and aliphatic diamines and artifacts composed of those terpolymers. Precursors and methods of converting them to the corresponding terpolymers US4315080

  28. Gagliani John, Lee Raymond (1982) Methods of preparing polyimides and artifacts composed thereof EP0048119

  29. Gagliani John, Lee Raymond, Wilcoxson Anthony L (1982) Methods of preparing polyimides and artifacts composed thereof US4361453

  30. Kuppusamy Kanakaraj, John A Kreutz (1994) Flexible Multi-layer Polyimide Film Laminates And Preparation Thereof US5298331

  31. Khatua SC, Maiti S (2002) High performance polymer films 4. Mechanical behavior. Eur Polym J 38:537–543

    Article  CAS  Google Scholar 

  32. Wang X, Li Y-F, Ma T, Zhang S, Gong C (2006) Synthesis and characterization of novel polyimides derived from 2, 6-bis[4-(3, 4-dicarboxyphenoxy)benzoyl]pyridine dianhydride and aromatic diamines. Polymer 47:3774–3783

    Article  CAS  Google Scholar 

  33. Yin D, Li Y, Shao Y, Zhao X, Yang S, Fan L (2005) Synthesis and characterization of soluble polyimides based on trifluoromethylated aromatic dianhydride and substitutional diaminetriphenylmethanes. J Fluorine Chem 126:819–823

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to B.S.Abdur Rahman University for financial support. The technical support of Dr. Premchand Jain, Perkin Elmer for TGA, Dr. V.Murugesan, Anna University and Mr. Selvam, Anjan Chemicals, for FTIR, Dr. S.Rajendran, Dr. M.S.Pandian, Pondicherry University, for XRD, Mr. Rohan Bosale, Hemetek Technologies for tensile properties, Dr.R.Vasanthakumari, B.S.A. University for DSC and TGA, and Dr.V.Geethaguru, Dr.M.Murugan, Mr.K.Gunasekar, Mr.T.Kannakaraj and Mr.R.Tamilselvan, B.S.A. University for their support to fabricate the solution casting machine and thickness measurement are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Revathi Purushothaman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purushothaman, R., Bilal, I.M. & Palanichamy, M. Effect of chemical structure of aromatic dianhydrides on the thermal, mechanical and electrical properties of their terpolyimides with 4,4′-oxydianiline. J Polym Res 18, 1597–1604 (2011). https://doi.org/10.1007/s10965-011-9564-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-011-9564-z

Keywords

Navigation