Skip to main content
Log in

Correlation of rheology and morphology and estimation of interfacial tension of immiscible COC/EVA blends

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Rheology and morphology of cyclic olefin copolymer (COC) / ethylene vinyl acetate copolymer (EVA) immiscible blends with droplet and co-continuous morphologies were experimentally examined and theoretically analyzed using emulsion and micromechanical models. The blends showed an asymmetric phase diagram in which the EVA-rich blends had smaller dispersed size domains as compared to the COC-rich blends. This could be explained based on the higher melt elasticity and viscosity of COC as compared to EVA determined by the rheological investigations. The rheological tools were used to investigate the miscibility of the blends. From the melt viscosity data it is found that the COC/EVA blends show a positive deviation behavior at all compositions which is a hint for strong interaction between the COC and EVA. Analysis of Cole-Cole and Han diagrams revealed that COC/EVA blends, at high EVA contents, were more compatible than COC-rich blends. For the droplet morphology, Palierne model was more successful but, by increasing the dispersed phase content some deviation was observed. In the co-continuous region, the Coran model was in good correspondence with the experimental data as compared to the Veenstra’s model. The storage and loss modulus of EVA-rich blends had a better correspondence with the Palierne model than the COC-rich blends which further confirmed the morphological findings. Interfacial tension calculated for the COC/EVA blends using the Palierne model, were about 1.2 and 15 mN/m2 for EVA-rich (10/90) and COC-rich blends (90/10), respectively. In both EVA-rich and COC-rich systems the interfacial tension increased with increasing the dispersed phase content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Moly KA, Oommen Z, Bhagawan SS, Groeninckx G, Thomas S (2002) J Appl Polym Sci 86:3210–3225

    Article  CAS  Google Scholar 

  2. Plochocki AP (1983) Polym Eng Sci 23(11):618–626

    Article  CAS  Google Scholar 

  3. Ticona Brochure; Germany 2006.

  4. Liu M, Lin HF, Yang MC, Lai MJ, Chang CC, Shiao PL, Chen IM, Chen JY (2007) Mater Lett 61:457–462

    Article  CAS  Google Scholar 

  5. Khanarian G (2000) Polym Eng Sci 40:2590–2601

    Article  CAS  Google Scholar 

  6. Sengers WGF, Sengupta P, Noordmeer JWM, Picken SJ, Gotsis AD (2004) Polymer 45:8881–8891

    Article  CAS  Google Scholar 

  7. Khonakdar HA, Jafari SH, Yavari A, Asadinezhad A, Wagenknecht U (2005) Polym Bull 54:75–84

    Article  CAS  Google Scholar 

  8. Di Y, Kang M, Zhao Y, Yan S, Wang X (2006) J Appl Polym Sci 99:875–883

    Article  CAS  Google Scholar 

  9. Brydson JA (1982) Plastic Materials. Butterworth, London

    Google Scholar 

  10. Jafari SH, Gupta AK (2000) J Appl Polym Sci 78:962–971

    Article  CAS  Google Scholar 

  11. Khonakdar HA, Morshedian J, Eslami H, Shokrollahi F (2004) J Appl Polym Sci 91:389

    Article  Google Scholar 

  12. Goodarzi V, Jafari SH, Khonakdar HA, Monemian SA, Hässler R, Jehnichen D (2009) J Polym Sci: Polym Phys. doi:10.1002/polb.21672

    Google Scholar 

  13. Stricker F, Mülhaupt R (1998) Angew Makromol Chem 256:101–104

    Article  CAS  Google Scholar 

  14. Doshev P, Tomova D, Wutzler A, Radusch H-J (2005) J Polym Eng 25:375–392

    Article  CAS  Google Scholar 

  15. Slouf M, Kolarik J, Fambri L (2004) J Appl Polym Sci 91:253–259

    Article  CAS  Google Scholar 

  16. Palierne JF (1990) Rheol Acta 29:204–214

    Article  CAS  Google Scholar 

  17. Huitric J, Mederic P, Moan M, Jarrin J (1998) Polymer 39:4849

    Article  CAS  Google Scholar 

  18. Asthana H, Jayaraman K (1999) Macromolecules 32:3412

    Article  CAS  Google Scholar 

  19. Jafari SH, Yavari A, Asadinezhad A, Khonakdar HA, Böhme F (2005) Polymer 46:5082–5093

    Article  CAS  Google Scholar 

  20. Yavari A, Asadinezhad A, Jafari SH, Khonakdar HA, Ahmadian S, Böhme F (2005) Macromol Mater Eng 290:1091–1096

    Article  CAS  Google Scholar 

  21. Lacroix C, Aressy M, Carreau PJ (1997) Rheol Acta 36:416–428

    CAS  Google Scholar 

  22. Gramespacher H, Meissner J (1992) J Rheol 36:1127–1141

    Article  CAS  Google Scholar 

  23. Oldroyd JG (1953) Proc R Soc Lond A 218:122

    Article  CAS  Google Scholar 

  24. Choi SJ, Schowalter WR (1975) Phys Fluids 18:420

    Article  Google Scholar 

  25. Chen G, Guo S, Li Y (2004) J Appl Polym Sci 92:3153–3158

    Article  CAS  Google Scholar 

  26. Coran AY, Patel RJ (1976) J Appl Polym Sci 20:3005–3016

    Article  CAS  Google Scholar 

  27. Veenstra H, Verkooijen PCJ, Van Lent BJJ, Van Dam J, de Boer P, Nijhof A (1817) Polymer 2000:41

    Google Scholar 

  28. Asadinezhad A, Yavari A, Jafari SH, Khonakdar HA, Böhme F (2005) Polym Eng Sci 45:1401–1407

    Article  CAS  Google Scholar 

  29. Calvao PS, Yee M, Demarquette NR (2005) Polymer 46:2610–2620

    Article  CAS  Google Scholar 

  30. Carrot C, Mbarek S, Jaziri M, Chalamet Y, Raveyre C, Prochazka F (2007) Macromol Mater Eng 292:693–706

    Article  CAS  Google Scholar 

  31. Kwag H, Rana D, Cho K, Rhee J, Woo T, Lee BH, Choe S (2000) Polym Eng Sci 40:1672–1681

    Article  CAS  Google Scholar 

  32. Han CD, Lem KW (1983) Polym Eng Rev 2:135–165

    CAS  Google Scholar 

  33. Paul S, Kale DD (2002) J Appl Polym Sci 84:665–671

    Article  CAS  Google Scholar 

  34. Utracki LA, Dumoulin MM (1995) Polypropylene alloys and blends with thermoplastics. In: Karger-Kocsis J (ed) Polypropylene: structure, blends and composites. Chapman & Hall, London, pp 50–94

    Google Scholar 

  35. Utracki LA (1990) J Rheo 35:1615–1637

    Article  Google Scholar 

  36. Paul DR, Bucknall CB (1999) Polymer Blends; Vol. 2, Performance. Wiley-InterScience, New York

    Google Scholar 

  37. Ha HS, Woo JY, Kim WH, Kim HS, Kim BK (2007) Poly Adv Technol 19:47–53

    Article  Google Scholar 

  38. Cui L, Zhou Z, Zhang Y, Zhang YX, Zhou W (2007) J Appl Polym Sci 106:811–816

    Article  CAS  Google Scholar 

  39. Khonakdar HA, Wagenknecht U, Jafari SH, Hässler R (2004) Adv Polym Technol 23:307–315

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from Iran National Science Foundation (INSF) is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed-Hassan Jafari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jafari, SH., Hesabi, MN., Khonakdar, H.A. et al. Correlation of rheology and morphology and estimation of interfacial tension of immiscible COC/EVA blends. J Polym Res 18, 821–831 (2011). https://doi.org/10.1007/s10965-010-9479-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9479-0

Keywords

Navigation