Skip to main content
Log in

Solid state polymerization and intercalation of aniline in Fe rich montmorillonite

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Hybrid compounds formed by aniline as the organic phase and Fe rich montmorillonite have been prepared by conventional solution process and a novel solid state intercalation method reported recently in the literature. The structure of hybrids depends closely on the process of preparation. In fact, contrary to conventional solution intercalation method, solid solid reaction favours the intercalation of anilinium cations together with aniline chloride neutral species. In addition, aniline species intercalated by this method are able to polymerize in the interlayer space of clay after 9 weeks without the use of any initiator of polymerization, however, the structure of hybrid compounds prepared by conventional solution method did not change. The aging time is accompanied by the reduction of structural Fe(III) to Fe(II) for hybrids prepared by solid reaction. The structure and electrical properties of the obtained polyaniline/clay nanocomposites have been studied. It was shown that ac conduction shows a regime of constant dc conductivity at low frequencies and a crossover to a frequency-dependent regime of the type A ωS at high frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Koh S, Dixon JB (2001) Appl Clay Sci 18:111

    Article  CAS  Google Scholar 

  2. Koskinen WC, Hermosin MC (2001) App Clay Sci 18:223

    Article  Google Scholar 

  3. Castagno KRL, Dalmoro V, Mauler RS, Azambuja DS (2009) J Polym Res

  4. Patil AO, Curtin DY, Paul IC (1984) J Am Chem Soc 106:348

    Article  CAS  Google Scholar 

  5. Rothenberg G, Downie AP, Raston CL, Scott JL (2001) J Am Chem Soc 123:8701

    Article  CAS  Google Scholar 

  6. Yamamoto N, Okuhara T, Nakato T (2001) J Mater Chem 11:1858

    Article  CAS  Google Scholar 

  7. Lázár K, Pál-Borbèly G, Beyer HK, Karge HG (1994) J Chem Soc Faraday 90:1329

    Article  Google Scholar 

  8. Yariv S, Lapides I (2000) J Mater Syn Process 8:223

    Article  CAS  Google Scholar 

  9. Jamal R, Abdiryim T, Ding Y, Nurulla I (2008) J Polym Res 15:75

    Article  CAS  Google Scholar 

  10. Landau A, Zaban A, Lapides I, Yariv S (2002) J Thermal Anal 70:103

    Article  CAS  Google Scholar 

  11. Bekri-Abbes I, Srasra E (2006) Chem Indian J 3.

  12. Bekri-Abbes I, Srasra E (2006) Bull Mater Sci 29:251

    Article  CAS  Google Scholar 

  13. Bekri-Abbes I, Srasra E (2006) Mater Sci Indian J 2:46

    CAS  Google Scholar 

  14. Frost RL, Kristof J, Mako E, Martens WN (2002) Langmuir 18:6491

    Article  CAS  Google Scholar 

  15. Frost RL, Mako E, Kristof J, Kloprogge JT (2001) J Colloid Interf Sci 244:359

    Article  Google Scholar 

  16. Green-Kelly R (1955) Trans Faraday Soc 51:412

    Article  Google Scholar 

  17. Yoshimoto S, Ohashi F, Kameyama T (2004) Macromol Rapid Commun 25:1687

    Article  CAS  Google Scholar 

  18. Yariv S, Sofer Z, Heller L, Bodenheimer W (1968) Isr J Chem 6:741

    CAS  Google Scholar 

  19. Farmer VC (1974) The layer silicates: the infrared spectra of minerals, London. Mineralogical Society 331-363.

  20. Greene-Kelly R (1957) In the differential thermal investigation of clays, London, Mineralogical Society 140.

  21. Grim RE (1968) Clay mineralogy. McGraw-Hill, New York, pp 313-328–353-387

    Google Scholar 

  22. Park SM (1997) Electrochemistry of π-conjugated polymer, handbook of conductive molecules and polymers: conductive Polymers: spectroscopy and physical properties, vol 3. Wiley, London, pp 429–461

    Google Scholar 

  23. Zagorska M, Prori A, Lefrant S (1997) Spectroelectrochemistry and spectroscopy of conducting polymers. In: Nalwa HS (ed) Handbook of conductive molecules and polymers: Vol 3: conductive polymers. Spectroscopy and physical properties. Wiley, London, pp 183–215

    Google Scholar 

  24. Goodman BA, Russell JD, Fraser AR, Woodhams FWD (1976) Clays Clay Miner 24:53

    Article  CAS  Google Scholar 

  25. Farmer VC (1974) The infrared spectra of minerals. Mineralogical Society, London, p 344

    Google Scholar 

  26. Frost J, Kloprogge T (2000) Spectrochim Acta 56:2177

    Article  Google Scholar 

  27. Stucki JW, Roth CB (1976) Clays Clay Miner 24:293

    Article  CAS  Google Scholar 

  28. Manceau A, Lanson B, Drits VA, Chateigner D, Gates WP, Wu J, Huo D, Stucki JW (2000) Am Mineral 85:133

    CAS  Google Scholar 

  29. Manceau A, Lanson B, Drits VA, Chateigner D, Wu J, Huo D, Gates WP, Stucki JW (2000) Am Mineralt 85:153

    CAS  Google Scholar 

  30. Fialips CI, Huo D, Yan L, Wu J, Stucki JW (2002) Am Mineral 87:630

    CAS  Google Scholar 

  31. Zeng QH, Wang DZ, Yu AB, Lu GQ (2002) Nanotechnology 13:549

    Article  CAS  Google Scholar 

  32. Bisquert J, Garcia-Belmonte G (2004) Russ J Electrochem 40:352

    Article  CAS  Google Scholar 

  33. Pinto NJ, Shah PD, Kahol PK, McCormik B (1996) J Phys Rev B 53:690

    Article  Google Scholar 

  34. Çelik M, Önal M (2007) J Polym Res 14:313–317

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imene Bekri-Abbes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bekri-Abbes, I., Srasra, E. Solid state polymerization and intercalation of aniline in Fe rich montmorillonite. J Polym Res 18, 691–699 (2011). https://doi.org/10.1007/s10965-010-9465-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9465-6

Keywords

Navigation