Skip to main content
Log in

The effects of filler content on cure and mechanical properties of dichlorocarbene modified styrene butadiene rubber/carbon black composites

  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A study has been carried out on the curing characteristics and mechanical properties of carbon black filled dichlorocarbene modified styrene butadiene rubber (DCSBR). Processing characteristics such as optimum cure time and maximum torque increases with increasing of the concentration of carbon black in DCSBR whereas scorch time decreases. The mechanical properties and resistance of the vulcanizate towards thermal, flame and oil resistance have been carried out. Variation of bound rubber content of carbon black filled DCSBR and the influence of the extracting temperature on the bound rubber content was investigated and its activation energy was calculated from the Arrhenius plot. The reinforcing nature of the filler was assessed from stress strain and swelling data. The enhancement in mechanical properties was supported by data on the increased content of crosslink density in these samples obtained from swelling and stress strain analysis. The results of the studies indicate that carbon black can be used as a good reinforcing filler for DCSBR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Serizawa, M. Ito, T. Kanamoto, K. Tanaka and A. Nomura, Polym. J., 14, 149 (1982).

    Google Scholar 

  2. N. Kida, M. Ito, F. Yatsuyanagi and H. Kaidou, J. Appl. Polym. Sci., 61, 1345 (1996).

    Google Scholar 

  3. Y. Kiuchi and M. Ito, J. Soc. Rubber Ind. Jpn., 72, 599 (1999).

    Google Scholar 

  4. F. Yatsuyanagi, H. Kaidou and M. Ito, Rubber Chem. Technol., 72, 657 (1999).

    Google Scholar 

  5. J. O’Brien, E. Cashell, G. E. Wardell and V. J. McBrierty, Macromolecules, 9, 653 (1976).

    Google Scholar 

  6. F. Yatsuyanagi, H. Kaidou and M. Ito, J. Soc. Rubber Ind. Jpn., 67, 707 (1994).

    Google Scholar 

  7. A. I. Medalia and G. Kraus, Science and Technology of Rubber, J. E. Mark, B. Erman and F. R. Eirich, Eds., Academic Press, San Diego, 1994, Chapter 9.

    Google Scholar 

  8. E. M. Dannenberg, Rubber Chem. Technol., 48, 410 (1975).

    Google Scholar 

  9. A. Voet, J. Polym. Sci., Macromolecular Reviews, 15, 327 (1980).

    Google Scholar 

  10. S. Wolf, Rubber Chem. Technol., 69, 325 (1996).

    Google Scholar 

  11. G. Kraus, Reinforcement of Elastomers, Wiley, New York, 1965.

    Google Scholar 

  12. M. P. Wanger, Rubber Chem. Technol., 49, 703 (1976).

    Google Scholar 

  13. D. C. Edwards, J. Mater. Sci., 25, 4175 (1990).

    Google Scholar 

  14. S. Ahmed and F. R. Jones, J. Mater. Sci., 25, 4933 (1990).

    Google Scholar 

  15. A. M. Salvi, R. Pucciariello, M. R. Guascito, V. Villani and L. Intermite, Surf. Interface Anal., 38, 850 (2002).

    Google Scholar 

  16. T. Yoshida, Int. Polym. Sci. Technol., 20, 29 (1993).

    Google Scholar 

  17. E. M. Dannenberg, H. Erwan, P. Joseph and I. Medalia, Trans. Inst. Rubber Ind., 37, 1 (1960).

    Google Scholar 

  18. K. S. Goplakrishnan, B. Kuriakose and E. V. Thomas, Rubber Res. Inst. Srilanka, 54, 600 (1977).

    Google Scholar 

  19. M. J. Wang, S. Wolf and E. H. Tan, Rubber Chem. Technol., 66, 178 (1993).

    Google Scholar 

  20. S. Wolf, M. J. Wang and E. H. Tan, Kaust. Gummi Kunstst., 47, 102 (1994).

    Google Scholar 

  21. S. Wolf, E. H. Tan and J. B. Donnet, Kaust. Gummi Kunstst., 47, 485 (1994).

    Google Scholar 

  22. G. Kraus, Rubber Chem. Technol., 51, 297 (1978).

    Google Scholar 

  23. I. Kurimoto and T. Yamaguchi, Jpn. Kokai Tokkyo Koho Jp., 01 275, 666 (1989).

    Google Scholar 

  24. W. D. Wang, A. Vidal, G. Nanse and J. B. Donnet, Kaust. Gummi Kunstst., 47, 493 (1994).

    Google Scholar 

  25. M. T. Ramesan and R. Alex, J. Appl. Polym. Sci., 68, 153 (1998).

    Google Scholar 

  26. A. E. Oberth, Rubber Chem. Technol., 63, 56 (1990).

    Google Scholar 

  27. L. Mullins, J. Appl. Polym. Sci., 11(4), 1 (1959).

    Google Scholar 

  28. R. Hagen, L. Salmen and B. Strenberg, J. Polym. Sci., Polym. Phys. Ed., 34, 1997 (1996).

    Google Scholar 

  29. N. Sombatsompop and K. J. Christodoulou, Polym. & Polym. Compos., 5(5), 377 (1997).

    Google Scholar 

  30. B. Ellis and G. N. Welding, in Techniques of Polymer Science, Soc. Chem. Ind., London, 1964, p. 46.

    Google Scholar 

  31. T. M. Aminabhavi, R. S. Munnoli and J. Hazard, J. Mater. Sci., 38, 223 (1994).

    Google Scholar 

  32. J. H. Hilderbrand and L. Scott, in The Solubility of Non-Electrolyte, (Van Nostrant, Reinhold, New York, 1950), 3rd Edit., Dover Publications, New York, 1964.

    Google Scholar 

  33. R. S. Khinnavar and T. M. Aminabhavi, J. Appl. Polym. Sci., 42, 2321 (1991).

    Google Scholar 

  34. N. Sombatsompop, Polym. Plast. Technol. Eng., 37(1), 19 (1998).

    Google Scholar 

  35. M. T. Ramesan, C. K. Premalatha and R. Alex, Plast. Rubb. and Comp., 30, 355 (2001).

    Google Scholar 

  36. J. J. Brennan, T. E. Jermynad and B. B. Boonstra, J. Appl. Polym. Sci., 8, 2687 (1964).

    Google Scholar 

  37. L. Bokobza and O. Rapoport, Macromol. Symp., 194, 125 (2003).

    Google Scholar 

  38. B. B. Boonstra, Rubber Technology Manufacture, 2nd Edit., C. M. Blow, Ed., Butterworth Scientific, Stoneham, MA, 1982, Chapter 7, p. 269.

    Google Scholar 

  39. W. H. Wandell and L. R. Evans, Rubber Chem. Technol., 69, 377 (1996).

    Google Scholar 

  40. G. R. Hamed, Rubb. World, 211, 25 (1994).

    Google Scholar 

  41. C. P. Yang and W. T. Chen, J. Appl. Polym. Sci., 36, 963 (1988).

    Google Scholar 

  42. A. P. Legrand, N. Lecomte, A. Vidal, B. Haidar and E. Papiper, J. Appl. Polym. Sci., 46, 2223 (1992).

    Google Scholar 

  43. J. C. Kenny, V. J. McBrierty, Z. Rigbi and D. C. Douglass, Macromolecules, 24, 436 (1991).

    Google Scholar 

  44. M. J. Wang, Rubber Chem. Technol., 72, 430 (1999).

    Google Scholar 

  45. J. E. Mark, Rubber Chem. Technol., 48, 495 (1975).

    Google Scholar 

  46. K. Yamaguchi, J. J. C. Busfield and A. G. Thomas, J. Polym. Sci., Part B: Polym. Phys., 41, 2079 (2003).

    Google Scholar 

  47. M. T. Ramesan, C. K. Premalatha and R. Alex, Plast. Rubb. & Comp., 30, 355 (2001).

    Google Scholar 

  48. M. T. Ramesan, G. Mathew, B. Kuriakose and R. Alex, Eur. Polym. J., 37, 719 (2001).

    Google Scholar 

  49. M. T. Ramesan and R. Alex, Kaust. Gummi Kunstst., 10, 456 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramesan, M.T. The effects of filler content on cure and mechanical properties of dichlorocarbene modified styrene butadiene rubber/carbon black composites. J Polym Res 11, 333–340 (2005). https://doi.org/10.1007/s10965-005-6571-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-005-6571-y

Key words

Navigation