Skip to main content
Log in

Exponential Behaviour of Nonlinear Fractional Schrödinger Evolution Equation with Complex Potential and Poisson Jumps

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

This paper aims to investigate stochastic fractional Schrödinger evolution equations with potential and Poisson jumps in Hilbert space. The solvability of the proposed system is established by using fractional calculus, semigroup theory, Krasnoselskii’s fixed point theorems and stochastic analysis. Furthermore, sufficient conditions are formulated and proved to assure that the mild solution decays exponentially to zero in the square mean. Lastly, an application is given to demonstrate the developed theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable

References

  1. Anguraj, A., Ravikumar, K., Nieto, J.J.: On stability of stochastic differential equations with random impulses driven by Poisson jumps. Stochastics 93(5), 682–696 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anukiruthika, K., Durga, N., Muthukumar, P.: Approximate controllability of semilinear retarded stochastic differential system with non-instantaneous impulses: Fredholm theory approach. IMA J. Math. Control Inform. 38(2), 684–713 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burton, T.A.: A fixed-point theorem of Krasnoselskii. Appl. Math. Lett. 11, 85–88 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caraballo, T., Garrido-Atienza, M.J., Taniguchi, T.: The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion. Nonlinear Anal. Theory Methods Appl. 74, 3671–3684 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cont, R., Tankov, P.: Financial Modelling with Jump Process, Financial Mathematics Series. Chapman and Hall/CRC, Boca Raton, United States (2004)

    MATH  Google Scholar 

  6. De Bouard, A., Debussche, A.: The nonlinear Schrödinger equation with white noise dispersion. J Funct. Anal. 259, 1300–1321 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Durga, N., Muthukumar, P.: Optimal control of fractional neutral stochastic differential equations with deviated argument governed by Poisson jumps and infinite delay. Optimal Control Appl. Methods. 40(5), 880–899 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Durga, N., Muthukumar, P.: Optimal control of Sobolev-type stochastic Hilfer fractional non-instantaneous impulsive differential inclusion involving Poisson jumps and Clarke subdifferential. IET Control Theory Appl. 14(6), 887–899 (2020)

    Article  MathSciNet  Google Scholar 

  9. Durga, N., Muthukumar, P., Fu, X.: Stochastic time-optimal control for time-fractional Ginzburg-Landau equation with mixed fractional Brownian motion. Stoch. Anal. Appl. 39(6), 1144–1165 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. Durga, N., Muthukumar, P.: Optimal control of fractional reaction-diffusion equations with Poisson jumps. J. Anal. 27(2), 605–621 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fatheddin, P., Qiu, Z.: Large deviations for nonlinear stochastic Schrödinger equation. Stoch. Anal. Appl. 39(3), 456–482 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Forlano, J., Oh, T., Wang, Y.: Stochastic nonlinear Schrödinger equation with almost space-time white noise. J. Aust. Math. Soc. 109(1), 44–67 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ge, F., Kou, C.: Stability analysis by Krasnoselskii’s fixed point theorem for nonlinear fractional differential equations. Comp. Math. Appl. 257, 308–316 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gorka, P., Prado, H., Trujillo, J.: The time fractional Schrödinger equation on Hilbert space. Integr. Equat. Oper. Th. 87, 1–14 (2017)

    Article  MATH  Google Scholar 

  15. Gorka, P., Prado, H., Pons, D.J.: The asymptotic behavior of the time fractional Schrödinger equation on Hilbert space. J. Math. Phys. 61(3), 031501 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guerrero, P., Lopez, J.L., Nieto, J.: Global \(H^1\) solvability of the 3D logarithmic Schrödinger equation. Nonlinear Anal. RWA 11(1), 79–87 (2010)

    Article  MATH  Google Scholar 

  17. He, J.W., Zhou, Y.: Stability analysis for discrete time abstract fractional differential equations. Fract. Calc. Appl. Anal. 24(1), 307–323 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ionescu, A.D., Pusateri, F.: Nonlinear fractional Schrödinger equations in one dimension. J Funct. Anal. 266, 139–176 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Juarez-Campos, B., Stochastic, B.: Schrödinger equation with Dirichlet noise boundary conditions. J. Math. Phys. 62(4), 041506 (2021)

    Article  MATH  Google Scholar 

  20. Jorion, P.: On jump processes in the foreign exchange and stock markets. Rev. Financ. Stud. 1, 427–445 (1988)

    Article  Google Scholar 

  21. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, North-holland Mathematics Studies, 204. Elsevier, Amsterdam (2006)

    Google Scholar 

  22. Li, Z., Xu, L., Xu, L.: Global attracting sets and exponential stability of stochastic partial functional differential equations. Syst. Control Lett. 148, 104859 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, Y., Chen, Y., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comp. Math. Appl. 59, 1810–1821 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mainardi, F.: Fractional Calculus and Waves in Linear Visco-elasticity: An Introduction to Mathematical Models. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  25. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. John Wiley, New York (1993)

    MATH  Google Scholar 

  26. Pan, G., Tang, L.: Solvability for Schrödinger equations with discontinuous coefficients. J. Funct. Anal. 270, 88–133 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-verlag, Newyork (1983)

    Book  MATH  Google Scholar 

  28. Podlubny, I.: Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Academic press, USA (1998)

    MATH  Google Scholar 

  29. Sulem, C., Sulem Pierre, L.: The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, vol. 139. Springer-Verlag, New York (1999)

    MATH  Google Scholar 

  30. Tran, N., Au, V.V., Zhou, Y., Huy Tuan, N.: On a final value problem for fractional reaction-diffusion equation with Riemann–Liouville fractional derivative. Math. Meth. Appl. Sci. 43(6), 3086–3098 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, Z., Yang, D., Ma, T., Sun, N.: Stability analysis for nonlinear fractional order systems based on comparison principle. Nonlinear Dyn. 75, 387–402 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, J., Zhou, Y., Wei, W.: Fractional Schrödinger equations with potential and optimal controls. Nonlinear Anal. RWA 13, 2755–2766 (2012)

    Article  MATH  Google Scholar 

  33. Yan, Z., Jia, X.: Existence of fractional stochastic Schrödinger evolution equations with potential and optimal controls. Int. J. Appl. Math. 46, 210–222 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Zhang, J., Wang, J., Zhou, Y.: Numerical analysis for time-fractional Schrödinger equation on two space dimensions. Adv. Differ. Equ. 2020, 53 (2020)

    Article  MATH  Google Scholar 

Download references

Funding

The work of first author was supported by Science and Engineering Research Board (SERB), DST, Govt. of India, SPG Project File No. SPG/2021/002891.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Muthukumar.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durga, N., Muthukumar, P. Exponential Behaviour of Nonlinear Fractional Schrödinger Evolution Equation with Complex Potential and Poisson Jumps. J Theor Probab 36, 1939–1955 (2023). https://doi.org/10.1007/s10959-023-01266-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-023-01266-5

Keywords

Mathematics Subject Classification (2020):

Navigation