Skip to main content
Log in

Equilibrium States of the Dynamic Conflict System for Three Players with a Parameter of Influence of the Ambient Environment

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We study the mathematical model of an abstract society in the form of a complex dynamical system with conflict interaction between its elements. New existence conditions are established for equilibrium (compromise) states (fixed points) in the presence of a permanent influence of the environment. Our main results are obtained for systems with three elements (players). In this case, we give a description of all equilibrium states, study their stability depending on the parameter of external influence, and partially describe the basins of attraction for one-point attractors. Several numerical examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. D. Koshmanenko, “Theorem on conflict for a pair of stochastic vectors,” Ukr. Math. Zh., 55, No. 4, 555–560 (2003); English translation: Ukr. Math. J., 55, No. 4, 671–678 (2003)

  2. V. D. Koshmanenko and N. V. Kharchenko, “Invariant points of a dynamical system of conflict in the space of piecewise-uniformly distributed measures,” Ukr. Math. Zh., 56, No. 7, 1102–1116 (2004); English translation: Ukr. Math. J., 56, No. 7, 1102–1116 (2004).

  3. V. Koshmanenko and N. Kharchenko, “Spectral properties of image measures after conflict interactions,” Theory Stochast. Process, 10, No. 3-4, 73–81 (2004).

    MathSciNet  MATH  Google Scholar 

  4. V. Koshmanenko, “The theorem of conflict for probability measures.,” Math. Methods Oper. Res., 59, No. 2, 303–313 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  5. V. D. Koshmanenko, Spectral Theory of Dynamical Conflict Systems [in Ukranian], Naukova Dumka, Kyiv (2016).

    Google Scholar 

  6. V. D. Koshmanenko, “The formula of conflict dynamics,” Zb. Prats Inst. Mat. Nats. Akad. Nauk Ukr., 17, No. 2, 113–149 (2020).

  7. S. Albeverio, V. Koshmanenko, and I. Samoilenko, “The conflict interaction between two complex systems: cyclic migration,” J. Interdiscip. Math., 11, No. 2, 163–185 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  8. V. D. Koshmanenko and I. V. Samoilenko, “Model of a dynamical system of a conflict triad,” Nelin. Kolyv., 14, No. 1, 55–75 (2011); English translation: Nonlin. Oscillat., 14, No. 1, 56–76 (2011).

  9. V. Koshmanenko, “Existence theorems of the w-limit states for conflict dynamical systems,” Methods Funct. Anal. Topol., 20, No. 4, 379–390 (2014).

    MathSciNet  MATH  Google Scholar 

  10. V. D. Koshmanenko and S. M. Petrenko, “Hahn-Jordan decomposition as an equilibrium state in the conflict system,” Ukrainian Mathematical Journal, 68, No. 1, 64–77 (2016) English translation: Ukr. Math. J., 68, No. 1, 67–82 (2016).

  11. V. Koshmanenko, T. Karataieva, N. Kharchenko, and I. Verygina, Models of the Conflict Redistribution of Vital Resources, Social Simulation Conference, Italy, Rome (2016).

  12. V. Koshmanenko and E. Pugacheva, Conflict Interactions with External Intervention, Social Simulation Conference, Italy, Rome (2016).

  13. V. Koshmanenko and N. Kharchenko, “Fixed points of complex systems with attractive interaction,” Methods Funct. Anal. Topol., 23, No. 2, 164–176 (2017); http://mfat.imath-kiev.ua/article/?id=970.

  14. T. V.Karataeva, V. D. Koshmanenko, and S. M. Petrenko, “Explicitly solvable models of redistribution of the conflict space,” Nelin. Kolyv., 20, No. 1, 98–112 (2017); English translation: J. Math. Sci., 229, No. 4, 439–454 (2018); https://doi.org/10.1007/s10958-018-3688-1.

  15. I. V. Veryhina and V. D. Koshmanenko, “Problem of optimal strategy in the models of conflict redistribution of the resource space,” Ukr. Math. Zh., 69, No. 7, 905–911 (2017); English translation: Ukr. Math. J., 69, No. 7, 1051–1059 (2017); https://doi.org/10.1007/s11253-017-1414-7.

  16. T. Karataieva, V. Koshmanenko, M. J. Krawczyk, and K. Kulakowski, “Mean field model of a game for power,” Phys. A, 525, 535–547 (2019); https://doi.org/10.1016/j.physa.2019.03.110.

  17. T. V.Karataeva and V. D. Koshmanenko, “ Society, mathematical model of a dynamic system of conflict,” Nelin. Kolyv., 22, No. 1, 66–85 (2019); English translation: J. Math. Sci., 247, No. 2, 291–313 (2020); https://doi.org/10.1007/s10958-020-04803-3.

  18. T. V.Karataeva and V. D. Koshmanenko, “ A model of conflict society with external influence,” Nelin. Kolyv., 24, No. 3, 342–362 ; English translation: J. Math. Sci., 272, No. 2, 244–266 (2023).

  19. R. Axelrod, “The dissemination of culture: a model with local convergence and global polarization,” J. Conflict Resolut., 41, No. 2, 203–226 (1997); http://www.jstor.org/stable/174371.

  20. N. Bellomo and J. Soler, “On the mathematical theory of the dynamics of swarms viewed as complex systems,” Math. Models Meth. Appl. Sci., 22, 29 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  21. N. Bellomo, M. Herrero, and A. Tosin, “On the dynamics of social conflicts: looking for the black swan,” Kinet. Relat. Models, 6, No. 3, 459–479 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  22. N. Bellomo, F. Brezzi, and M. Pulvirenti, “Modeling behavioral social systems,” Math. Models Methods Appl. Sci., 27, No. 1, 1–11 (2017); DOI: https://doi.org/10.1142/S0218202517020018.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Flache, M. M’as, T. Feliciani, E. Chattoe-Brown, G. Deffuant, S. Huet, and J. Lorenz, “Models of social influence: towards the next frontiers,” J. Artif. Soc. Soc. Simul., 20(4), 1–2 (2017).

    Article  Google Scholar 

  24. Hu Haibo, “Competing opinion diffusion on social networks,” R. Soc. Open Sci., 4, 171160 (2017); DOI: https://doi.org/dx.doi.org/10.1098/rsos.171160.

  25. J. M. Epstein, Nonlinear Dynamics, Mathematical Biology, and Social Science, Addison-Wesley Publ. Co., Adv. Book Program, Reading, MA (1997).

  26. J. M. Epstein, “Why Model?,” J. Artif. Soc. Soc. Simul., 11, No. 412 (2008).

  27. N. E. Friedkin and E. C. Johnsen, Social Influence Network Theory, Cambridge Univ. Press, Cambridge (2011); DOI: https://doi.org/10.1017/CBO9780511976735.

  28. M. Jalili, “Social power and opinion formation in complex networks,” Phys. A, 392, No. 4, 959–966 (2013); DOI: https://doi.org/10.1016/,.physa.2012.10.013.

    Article  MathSciNet  Google Scholar 

  29. S. MD. M. Khan and K. I. Takahashi, “Segregation through conflict,” Adv. Appl. Sociol., 3, No. 8, 315–319 (2013).

  30. K. I. Takahashi and K. MD. M. Salam, “Mathematical model of conflict with non-annihilating multi-opponent,” J. Interdiscip. Math., 9, No. 3, 459–473 (2006).

  31. S. A. Marvel, H. Hong, A. Papush, and S. H. Strogatz, “Encouraging moderation: clues from a simple model of ideological conflict,” Phys. Rev. Lett., 109, 118702 (2012); DOI: https://doi.org/10.1103/PhysRevLett.109.118702.

    Article  Google Scholar 

  32. T. C. Schelling, The strategy of conflict, Harvard Univ. Press (1980).

    MATH  Google Scholar 

  33. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York (2003)[ DOI: https://doi.org/10.1007/b97481.

  34. P. Glendinning, Stability, Instability and Chaos, Cambridge Univ. Press, Cambridge (1994).

    Book  MATH  Google Scholar 

  35. H. Hong and S. H. Strogatz, “Conformists and contrarians in a Kuramoto model with identical natural frequencies,” Phys. Rev. E, 84, 046202 (2011).

    Article  Google Scholar 

  36. P. Ashwin, C. Bick, and O. Burylko, “Identical phase oscillator networks: bifurcations, symmetry and reversibility for generalized coupling,” Front. Appl. Math. Stat., 2, No. 7 (2016).

  37. O. A. Burylko, “Collective dynamics and bifurcations in symmetric networks of phase oscillators. I,” Nelin. Kolyv., 22, No. 2, 165–195 (2019); English translation: J. Math. Sci., 249, No. 4, 573–600 (2020).

  38. O. A. Burylko, “Collective dynamics and bifurcations in symmetric networks of phase oscillators. II,” Nelin. Kolyvannya, 22, No. 3, 312–340 (2019); English translation: J. Math. Sci., 253, No. 2, 204–229 (2021); DOI: https://doi.org/10.1007/s10958-021-05223-7.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Koshmanenko.

Additional information

Translated from Neliniini Kolyvannya, Vol. 25, No. 2-3, pp. 207–225, April–September, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karataieva, T.V., Koshmanenko, V.D. Equilibrium States of the Dynamic Conflict System for Three Players with a Parameter of Influence of the Ambient Environment. J Math Sci 274, 861–880 (2023). https://doi.org/10.1007/s10958-023-06649-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06649-x

Navigation