Skip to main content
Log in

On Hybrid Caputo-Proportional Fractional Differential Inclusions in Banach Spaces

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We investigate the existence of solutions for a nonlinear fractional differential inclusion in a sense of hybrid Caputo-proportional fractional derivatives (HCPFDs) in Banach spaces. The main result is discussed by using the set-valued concern from the Mönch fixed-point theorem along with the Kuratowski measure of noncompactness. We present an example to demonstrate theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Jose, R. Ramachandran, J. Alzabut, G. Rajchakit, J. Cao, and V. E. Balas, “Mathematical modeling on transmission and optimal control strategies of corruption dynamics,” Nonlin. Dynam., 109, 3169–3187 (2022); https://doi.org/10.1007/s11071-022-07581-6.

  2. S. Aadhithiyan, R. Raja, J. Alzabut, Quanxin Zhu, and M. Niesabitowskii, “Non-fragile Mittag–Leffler synchronization of fractional order non-linear complex dynamical networks with constant and infinite distributed delays,” Math. Meth. Appl. Sci., 45, 2166–2189 (2022); DOI: https://doi.org/10.1002/mma.7915.

  3. D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus Models and Numerical Methods,World Scientific, Singapore (2012).

    Book  MATH  Google Scholar 

  4. R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore (2000).

    Book  MATH  Google Scholar 

  5. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science, Amsterdam (2006).

    MATH  Google Scholar 

  6. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: an Introduction to Mathematical Models,World Scientific Publ. Co., Singapore, et al. (2010).

  7. K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley–Interscience, John Wiley & Sons: New York, NY, USA (1993).

  8. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego (1999).

    MATH  Google Scholar 

  9. S. Samko, A. Kilbas, and O. Marichev, Fractional Integrals and Derivatives, Gordon & Breach Sci. Publ., Yverdon (1993).

    MATH  Google Scholar 

  10. K. Diethelm and A. D. Freed, On the Solution of Nonlinear Fractional-Order Differential Equations Used in the Modeling of Viscoelasticity, Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, Springer-Verlag, Heidelberg, 217–224 (1999).

    Google Scholar 

  11. H. M. Srivastava and K. M. Saad, “Some new models of the time-fractional gas dynamics equation,” Adv. Math. Models Appl., 3(1), 5–17 (2018).

    Google Scholar 

  12. F. Jarad, T. Abdeljawad, and J. Alzabut, “Generalized fractional derivatives generated by a class of local proportional derivatives,” Europ. Phys. J. Spec. Topics, 226, No. 16–18, 3457–3471 (2017); DOI: https://doi.org/10.1140/epjst/e2018-00021-7.

    Article  Google Scholar 

  13. A. Atangana and D. Baleanu, “New fractional derivatives with nonlocal and non-singular kernel, theory and application to heat transfer model,” Thermal Sci., 20, 763–769 (2016).

    Article  Google Scholar 

  14. A. Fernandez, M. A. Zarslan, and D. Baleanu, “On fractional calculus with general analytic kernels,” Appl. Math. Comput., 354, 248–265 (2019).

    MathSciNet  MATH  Google Scholar 

  15. D. Baleanu and A. Fernandez, “On fractional operators and their classifications,” Mathematics, 7, 830 p. (2019).

  16. R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh, “A new definition of fractional derivative,” J. Comput. Appl. Math., 264, 65–70 (2014).

  17. D. R. Anderson and D. J. Ulness, “Newly defined conformable derivatives,” Adv. Dyn. Syst. Appl., 10, 109–137 (2015).

    MathSciNet  Google Scholar 

  18. D. Baleanu, A. Fernandez, and A. Akgül, “On a fractional operator combining proportional and classical differintegrals,” Mathematics, 8, No. 3, 360 p. (2020).

  19. H. Gunerhan, H. Dutta, M. Ali Dokuyucu, and W. Adel, “Analysis of a fractional HIV model with Caputo and constant proportional Caputo operators,” Chaos Solitons Fractals, 139, 110053 (2020); DOI: https://doi.org/10.1016/j.chaos.2020.110053.

  20. B. Acay and M. Inc, “Fractional modeling of temperature dynamics of a building with singular kernels,” Chaos Solitons Fractals, 142, 110482 (2021); DOI: https://doi.org/10.1016/j.chaos.2020.110482.

    Article  MathSciNet  Google Scholar 

  21. M. I. Asjad, M. D. Ikram, and A. Akg, “Analysis of MHD viscous fluid flow through porous medium with novel power law fractional differential operator,” Phys. Scr., 95, No. 11, 115–209 (2020).

    Article  Google Scholar 

  22. M. D. Ikram, M. I. Asjad, A. Akgul, and D. Baleanu, “Effects of hybrid nanofluid on novel fractional model of heat transfer flow between two parallel plates,” Alexandria Eng. J., 60(4), 3593–3604 (2021).

    Article  Google Scholar 

  23. M. Ahmad, M. A. Imran, D. Baleanu, and A. S. Alshomrani, “Thermal analysis of magnetohydrodynamic viscous fluid with innovative fractional derivative,” Thermal Sci., 24(1), 351–359 (2020).

    Article  Google Scholar 

  24. M. I. Abbas, “Existence results and the Ulam stability for fractional differential equations with hybrid proportional-Caputo derivatives,” J. Nonlin. Funct. Anal., 2020, Article 48 (2020); DOI: https://doi.org/10.23952/jnfa.2020.48.

  25. M. I. Abbas, “Ulam stability and existence results for fractional differential equations with hybrid proportional-Caputo derivatives,” J. Interdiscip. Math., 25, Issue 2 (2022); DOI: https://doi.org/10.1080/09720502.2021.1889156.

  26. M. I. Abbas and S. Hristova, “Existence results of nonlinear generalized proportional fractional differential inclusions via the diagonalization technique,” AIMS Math., 6(11), 12832–12844 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Benchohra, J. R. Graef, N. Guerraiche, and S. Hamani, “Nonlinear boundary-value problems for fractional differential inclusions with Caputo–Hadamard derivatives on the half line,” AIMS Math., 6(6), 6278–6292 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Benchohra and S. Hamani, “Nonlinear boundary value problems for differential inclusions with Caputo fractional derivative,” Topol. Meth. Nonlin. Anal., 32, No. 1, 115–130 (2008).

    MathSciNet  MATH  Google Scholar 

  29. M. Benchohra, N. Hamidi, and J. J. Nieto, “Existence of solutions to differential inclusions with fractional order and impulses,” Electron. J. Different. Equat., 80, 1–18 (2010).

    MathSciNet  Google Scholar 

  30. J. R. Graef, N. Guerraiche, and S. Hamani, “Boundary value problems for fractional differential inclusions with Hadamard type derivatives in Banach spaces,” Stud. Univ. Babes¸-Bolyai Math., 62(4), 427–438 (2017).

  31. N. Nyamoradi, D. Baleanu, and R. Agarwal, “On a multipoint boundary value problem for a fractional order differential inclusion on an infinite interval,” Adv. Math. Phys., 2013, Article 823961 (2013).

  32. B. Ahmad, A. Alsaedi, S. K. Ntouyas, and H. H. Al-Sulami, “On neutral functional differential inclusions involving Hadamard fractional derivatives,” Mathematics, 7(11), Article 1084 (2019).

  33. B. Alqahtani, S. Abbas, M. Benchohra, and S. S. Alzaid, “Fractional q-difference inclusions in Banach spaces,” Mathematics, 8(91) (2020); DOI: https://doi.org/10.3390/math8010091.

  34. J. Banaś and T. Zaja¸c, “On a measure of noncompactness in the space of regulated functions and its applications,” Adv. Nonlin. Anal., 8, 1099–1110 (2019).

  35. A. Das, B. Hazarika, V. Parvaneh, and M. Mursaleen, Solvability of Generalized Fractional Order Integral Equations Via Measures of Noncompactness, Math. Sci. (2021); DOI: https://doi.org/10.1007/s40096-020-00359-0.

    Article  MathSciNet  MATH  Google Scholar 

  36. B. Hazarika, R. Arab, and M. Mursaleen, Applications of Measure of Noncompactness and Operator Type Contraction for Existence of Solution of Functional Integral Equations, Complex Anal. Oper. Theo. (2019); DOI: https://doi.org/10.1007/s11785-019-00933-y.

    Article  MathSciNet  MATH  Google Scholar 

  37. A. Salem, H. M. Alshehri, and L. Almaghamsi, “Measure of noncompactness for an infinite system of fractional Langevin equation in a sequence space,” Adv. Difference Equat., 132, Paper No. 132 (2021); DOI: https://doi.org/10.1186/s13662-021-03302-2.

  38. M. Benchohra, J. Henderson, and D. Seba, “Boundary-value problems for fractional differential inclusions in Banach space,” Fract. Differ. Calc., 2 No. 1, 99–108 (2012).

    MathSciNet  MATH  Google Scholar 

  39. K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin (1992).

    Book  MATH  Google Scholar 

  40. A. Lasota and Z. Opial, “An application of the Kakutani–Ky Fan theorem in the theory of ordinary differential equations,” Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys., 13, 781–786 (1965).

    MathSciNet  MATH  Google Scholar 

  41. J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York (1980).

    MATH  Google Scholar 

  42. D. O’Regan and R. Precup, “Fixed point theorems for set-valued maps and existence principles for integral inclusions,” J. Math. Anal. Appl., 245, 594–612 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  43. H. P. Heinz, “On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions,” Nonlin. Anal., 7, 1351–1371 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  44. K. Diethelm, The Analysis of Fractional Differential Equations: an Application-Oriented Exposition Using Differential Operators of Caputo Type, Springer-Verlag, Berlin (2010).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Alzabut.

Additional information

Published in Neliniini Kolyvannya, Vol. 25, No. 2-3, pp. 147–160, April–September, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, M.I., Alzabut, J. & Subramanian, M. On Hybrid Caputo-Proportional Fractional Differential Inclusions in Banach Spaces. J Math Sci 274, 791–806 (2023). https://doi.org/10.1007/s10958-023-06643-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06643-3

Navigation