Skip to main content
Log in

The Dirichlet problem for the Beltrami equations with sources

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The paper is devoted to the study of the Dirichlet problem Re ω(z) → φ(ζ) as zζ, zD, ζ ∈ ∂D, with continuous boundary data φ : ∂D for Beltrami equations \( {\omega}_{\overline{z}} \) = μ(z)ωz + σ(z), |μ(z)| < 1 a.e., with sources σ : D in the case of locally uniform ellipticity. In this case, we have established a series of effective integral criteria of the BMO, FMO, Calderon-Zygmund, Lehto, and Orlicz types on the singularities of the equations at the boundary for the existence, representation, and regularity of solutions in arbitrary bounded domains D of the complex plane with no boundary component degenerated to a single point for sources σ in Lp (D), p > 2, with compact support in D. Moreover, we have proved the existence, representation, and regularity of weak solutions of the Dirichlet problem in such domains for the Poisson-type equation div[A(z)∇ u(z)] = g(z), whose source gLp(D), p > 1, has compact support in D and whose matrix-valued coefficient A(z) guarantees its locally uniform ellipticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Ahlfors, Lectures on Quasiconformal Mappings. New York, Van Nostrand, 1966.

    MATH  Google Scholar 

  2. L. V. Ahlfors and L. Bers, “Riemann’s mapping theorem for variable metrics,” Ann. Math., 72(2), 385–404 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Andreian Cazacu, “On the length-area dilatation,” Complex Variables, Theory Appl., 50(7–11), 765–776 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  4. K. Astala, T. Iwaniec, and G. Martin, Elliptic partial differential equations and quasiconformal mappings in the plane. Princeton Mathematical Series, 48. Princeton, NJ, Princeton University Press, 2009.

  5. B. Bojarski, “Generalized solutions of a system of differential equations of the first order of the elliptic type with discontinuous coefficients,” Mat. Sb., N. Ser., 43(85)(4), 451–503 (1958); transl. in Report of Univ. of Jyväskylä, Dept. Math. and Stat., 118, Univ. of Jyväskylä (2009).

  6. B. Bojarski, V. Gutlyanskii, O. Martio, and V. Ryazanov. Infinitesimal geometry of quasiconformal and bi-lipschitz mappings in the plane, EMS Tracts in Mathematics, Vol. 19, Zürich: European Mathematical Society, 2013.

    MATH  Google Scholar 

  7. B. Bojarski, V. Gutlyanskii, and V. Ryazanov, “On integral conditions for the general Beltrami equations,” Complex Anal. Oper. Theory, 5(3), 835–845 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Bojarski, V. Gutlyanskii, and V. Ryazanov, “On existence and representation of solutions for general degenerate Beltrami equations,” Complex Var. Elliptic Equ., 59(1), 67–75 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Brezis and L. Nirenberg, “Degree theory and BMO. I. Compact manifolds without boundaries,” Selecta Math. (N.S.), 1(2), 197–263 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Chiarenza, M. Frasca, and P. Longo, “W2,p-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients,” Trans. Amer. Math. Soc., 336(2), 841–853 (1993).

  11. V. Gutlyanskii, O. Martio, T. Sugawa, and M. Vuorinen, “On the degenerate Beltrami equation,” Trans. Amer. Math. Soc., 357(3), 875–900 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  12. V. Gutlyanskii, O. Nesmelova, and V. Ryazanov, “On a model semilinear elliptic equation in the plane,” J. Math. Sci., 220(5), 603–614 (2017); transl. from Ukr. Mat. Visn., 13(1), 91–105 (2016).

    MATH  Google Scholar 

  13. V. Gutlyanskii, O. Nesmelova, and V. Ryazanov, “On quasiconformal maps and semi-linear equations in the plane,” J. Math. Sci., 229(1), 7–29 (2018); transl. from Ukr. Mat. Visn., 14(2), 161–191 (2017).

    MATH  Google Scholar 

  14. V. Gutlyanskii, O. Nesmelova, and V. Ryazanov, “To the theory of semi-linear equations in the plane,” J. Math. Sci., 242(6), 833–859 (2019); transl. from Ukr. Mat. Visn., 16(1), 105–140 (2019).

    MathSciNet  MATH  Google Scholar 

  15. V. Gutlyanskii, O. Nesmelova, and V. Ryazanov, “On a quasilinear Poisson equation in the plane,” Anal. Math. Phys., 10(1), Paper No. 6, 1–14 (2020).

  16. V. Gutlyanskii, O. Nesmelova, V. Ryazanov, and E. Yakubov, “On the Hilbert problem for semi-linear Beltrami equations,” Ukr. Mat. Visn., 19(4), 489–516 (2022).

    MATH  Google Scholar 

  17. V. Gutlyanskii, O. Nesmelova, V. Ryazanov, and A. Yefimushkin, “Logarithmic potential and generalized analytic functions,” J. Math. Sci., 256(6), 735–752 (2021); transl. from Ukr. Mat. Visn., 18(1), 12–36 (2021).

    MathSciNet  MATH  Google Scholar 

  18. V. Gutlyanskii, V. Ryazanov, E. Sevostyanov, and E. Yakubov, “BMO and Dirichlet problem for degenerate Beltrami equation,” J. Math. Sci., 268(2), 157–177 (2022); transl. from Ukr. Mat. Visn., 19(3), 327–354 (2022).

    MATH  Google Scholar 

  19. V. Gutlyanskii, V. Ryazanov, U. Srebro, and E. Yakubov, The Beltrami Equation: A Geometric Approach. Developments in Mathematics 26, Springer, Berlin, 2012.

  20. J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993.

  21. A. A. Ignat’ev and V. I. Ryazanov, “Finite mean oscillation in the mapping theory,” Ukrainian Math. Bull., 2(3), 403–424 (2005).

  22. T. Iwaniec, “Regularity of solutions of certain degenerate elliptic systems of equations that realize quasiconformal mappings in n-dimensional space,” Differential and integral equations. Boundary value problems, 97–111 (1979).

  23. T. Iwaniec, “Regularity theorems for solutions of partial differential equations for quasiconformal mappings in several dimensions,” Dissertationes Math. (Rozprawy Mat.), 198, 45 pp. (1982).

  24. T. Iwaniec and C. Sbordone, “Riesz transforms and elliptic PDEs with VMO coefficients,” J. Anal. Math., 74, 183–212 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  25. F. John and L. Nirenberg, “On functions of bounded mean oscillation,” Comm. Pure Appl. Math., 14 415–426 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  26. P. Koosis, Introduction to Hp spaces, Cambridge Tracts in Mathematics vol. 115, Cambridge Univ. Press, Cambridge, 1998.

    Google Scholar 

  27. O. Lehto, “Homeomorphisms with a prescribed dilatation,” Lecture Notes in Math., 118, 58–73 (1968).

    Article  Google Scholar 

  28. O. Lehto and K. J. Virtanen, Quasiconformal mappings in the plane, Springer-Verlag, Berlin, Heidelberg, 1973.

    Book  MATH  Google Scholar 

  29. O. Martio, V. Ryazanov, and M. Vuorinen, “BMO and Injectivity of Space Quasiregular Mappings,” Math. Nachr., 205, 149–161 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  30. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in modern mapping theory. Springer Monographs in Mathematics. Springer, New York, 2009.

    MATH  Google Scholar 

  31. V. G. Maz’ja, Sobolev spaces, Springer-Verlag, Berlin, 1985.

  32. R. Nevanlinna, Eindeutige analytische Funktionen. 2. Aufl. Reprint. (German) - Die Grundlehren der mathematischen Wissenschaften. Band 46. Springer-Verlag, Berlin-Heidelberg-New York, 1974.

  33. D. K. Palagachev, “Quasilinear elliptic equations with VMO coefficients,” Trans. Amer. Math. Soc., 347(7), 2481–2493 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  34. M. A. Ragusa, “Elliptic boundary value problem in vanishing mean oscillation hypothesis,” Comment. Math. Univ. Carolin., 40(4), 651–663 (1999).

    MathSciNet  MATH  Google Scholar 

  35. M. A. Ragusa and A. Tachikawa, “Partial regularity of the minimizers of quadratic functionals with VMO coefficients,” J. Lond. Math. Soc., II. Ser., 72(3), 609–620 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  36. Th. Ransford, Potential theory in the complex plane. London Mathematical Society Student Texts 28, Univ. Press, Cambridge, 1995.

  37. H. M. Reimann and T. Rychener, Funktionen Beschränkter Mittlerer Oscillation. Lecture Notes in Math., 487, 1975.

  38. V. Ryazanov, “On Hilbert and Riemann problems for generalized analytic functions and applications,” Anal.Math.Phys., 11, paper 5 (2021).

  39. V. Ryazanov and R. Salimov, “Weakly planar spaces and boundaries in the theory of mappings,” Ukr. Mat. Visn., 4(2), 199–234 (2007); transl. in Ukr. Math. Bull., 4(2), 199–234 (2007).

  40. V. Ryazanov, U. Srebro, and E. Yakubov, “BMO-quasiconformal mappings. J. d’Anal. Math., 83, 1–20 (2001).

  41. V. Ryazanov, U. Srebro, and E. Yakubov, “Beltrami equation and FMO functions,” Contemp. Math., 382, Israel Math. Conf. Proc., 357–364 (2005).

  42. V. Ryazanov, U. Srebro, and E. Yakubov, “Finite mean oscillation and the Beltrami equation,” Israel Math. J., 153, 247–266 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  43. V. Ryazanov, U. Srebro, E. Yakubov, “On the theory of the Beltrami equation,” Ukr. Math. J., 58(11), 1786–1798 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  44. V. Ryazanov, U. Srebro, and E. Yakubov, “Integral conditions in the theory of the Beltrami equations,” Complex Var. Elliptic Equ., 57(12), 1247–1270 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  45. E. B. Saff and V. Totik, “Logarithmic potentials with external fields,” Grundlehren der Mathematischen Wissenschaften, 316. Springer, Berlin, 1997.

  46. D. Sarason, “Functions of vanishing mean oscillation,” Trans. Amer. Math. Soc., 207, 391–405 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  47. S. L. Sobolev, Applications of functional analysis in mathematical physics. Transl. of Math. Mon., 7. AMS, Providence, R.I., 1963.

  48. I. N. Vekua, Generalized analytic functions. Pergamon Press. London-Paris-Frankfurt; Addison-Wesley Publishing Co., Inc., Reading, Mass, 1962.

  49. N. Wiener, “The Dirichlet problem,” Mass. J. of Math., 3, 129-146 (1924).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Gutlyanskiĭ.

Additional information

Translated from Ukrains’kiĭ Matematychnyĭ Visnyk, Vol. 20, No. 1, pp. 24-59, January-March, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutlyanskiĭ, V., Ryazanov, V., Nesmelova, O. et al. The Dirichlet problem for the Beltrami equations with sources. J Math Sci 273, 351–376 (2023). https://doi.org/10.1007/s10958-023-06503-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-023-06503-0

Keywords

Navigation