Skip to main content
Log in

HIGHER-RANK RADON TRANSFORMS ON CONSTANT CURVATURE SPACES

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We study higher-rank Radon transforms of the form \(f(\tau ) \rightarrow \int _{\tau \subset \zeta } f(\tau )\), where \(\tau\) is a j-dimensional totally geodesic submanifold in the n-dimensional real constant curvature space and \(\zeta\) is a similar submanifold of dimension \(k >j\). The corresponding dual transforms are also considered. The transforms are explored in the Euclidean case (affine Grassmannian bundles), the elliptic case (compact Grassmannians), and the hyperbolic case (the hyperboloid model, the Beltrami-Klein model, and the projective model). The main objectives are sharp conditions for the existence and injectivity of the Radon transforms in Lebesgue spaces, transition from one model to another, support theorems, and inversion formulas. Conjectures and open problems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See also Wikipedia, Beltrami–Klein model, https://en.wikipedia.org/wiki/Beltrami%E2%80%93Klein_-model.

  2. This explanation was kindly sent to the author by Prof. Tomoyuki Kakehi.

References

  1. C. A. Berenstein, E. Casadio Tarabusi, On the Radon and Riesz transforms in real hyperbolic spaces, Contemp. Math. 140 (1992), 1–21.

  2. C. A. Berenstein, E. Casadio Tarabusi, A. Kurusa, Radon transform on spaces of constant curvature, Proc. Amer. Math. Soc. 125 (1997), 455–461.

  3. C. A. Berenstein, B. Rubin. Totally geodesic Radon transform of \(L^p\)-functions on real hyperbolic space, in: Fourier Analysis and Convexity, Appl. Numer. Harmon. Anal. Birkhäuser, Boston, 2004, pp. 37–58.

  4. H. Boerner, Representations of groups, North-Hollan, Amsterdam, 1963.

  5. W. O. Bray, Aspects of harmonic analysis on real hyperbolic space, in: Fourier Analysis: analytic and geometric aspects, ed. by W. O. Bray, P. S. Milojevic, and \(\check{\rm C}\). V. Stanojević, Lect. Notes Pure Appl. Math. 157, Marcel Dekker, 1994, pp. 77–102.

  6. J. W. Cannon, W. J. Floyd, R. Kenyon, W. R. Parry, Hyperbolic geometry, in: Flavors of geometry, Math. Sci. Res. Inst. Publ., 31, Cambridge Univ. Press, Cambridge, 1997, pp. 59–115.

  7. M. E. Davison, A singular value decomposition for the Radon transform in n-dimensional Euclidean space, Numer. Funct. Anal. Optim. 3 (1981), 321–340.

  8. I. M. Gelfand, S. G. Gindikin, M. I. Graev, Selected topics in integral geometry, Translations of Mathematical Monographs, AMS, Providence, Rhode Island, 2003.

  9. I. M. Gelfand, M. I. Graev, R. Rosu, The problem of integral geometry and intertwining operators for a pair of real Grassmannian manifolds, J. Operator Theory 12 (1984), 339–383.

  10. I. M. Gelfand, M. I. Graev, N. J. Vilenkin, Generalized Functions, Vol 5. Integral geometry and representation theory, Academic Press, 1966.

  11. F. B. Gonzalez, Invariant differential operators and the range of the Radon \(d\)-plane transform, Math. Ann. 287 (1990), 627–635.

  12. F. B. Gonzalez, T. Kakehi, Pfaffian systems and Radon transforms on affine Grassmann manifolds, Math. Ann. 326 (2003), 237–273.

  13. F. B. Gonzalez, T. Kakehi, Dual Radon transforms on affine Grassmann manifolds. Trans. Amer. Math. Soc. 356 (2004), 4161–4180.

  14. F. B. Gonzalez, T. Kakehi, Moment conditions and support theorems for Radon transforms on affine Grassmann manifolds, Adv. Math. 201 (2006), 516–548.

  15. P. Goodey, W. Weil, Centrally symmetric convex bodies and Radon transforms on higher order Grassmannians, Mathematika 38 (1991), 117–133.

  16. E.L. Grinberg, On images of Radon transforms, Duke Math. J. 52 (1985), 939–972.

  17. E.L. Grinberg, Radon transforms on higher rank Grassmannians, J. Differential Geometry 24 (1986), 53–68.

  18. E. Grinberg, B. Rubin. Radon inversion on Grassmannians via Gårding-Gindikin fractional integrals. Annals of Math. 159 (2004), 809–843.

  19. S. Helgason, Groups and geometric analysis: integral geometry, invariant differential operators, and spherical functions, Academic Press, 2000.

  20. S. Helgason, Integral geometry and Radon transform, Springer, New York-Dordrecht-Heidelberg-London, 2011.

  21. S. Ishikawa, The range characterizations of the totally geodesic Radon transform on the real hyperbolic space, Duke Math. Journal, 90 (1997), 149–203.

  22. S. Ishikawa, The range of the Radon transform on the real hyperbolic Grassmann manifold, Acta Sci. Math. (Szeged) 86 (2020), 225–264.

  23. S. Ishikawa, The Radon transform for double fibrations of semisimple symmetric spaces, Acta Sci. Math. (Szeged) 87 (2021), 121–162.

  24. T. Kakehi, Integral geometry on Grassmann manifolds and calculus of invariant differential operators, J. Funct. Anal. 168 (1999), 1–45.

  25. F. Keinert, Inversion of \(k\)-plane transforms and applications in computer tomography, SIAM Review 31 (1989), 273–289.

  26. Á. Kurusa, Support theorems for totally geodesic Radon transforms on constant curvature spaces, Proc. Amer. Math. Soc. 122 (1994), 429–435.

  27. A. Louis, Orthogonal function series expansions and the null space of the Radon transform, SIAM J. Math. Anal. 15 (1984), 621–633.

  28. P. Maass, The x-ray transform: singular value decomposition and resolution, Inverse Problems 3 (1987), 729–741.

  29. P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, 1995.

  30. F. Natterer, The mathematics of computerized tomography, SIAM, Philadelphia, 2001.

  31. V. Palamodov, Reconstructive integral geometry, Monographs in Mathematics, 98, Basel, Birkhäuser Verlag, 2004.

  32. E.E. Petrov, The Radon transform in spaces of matrices and in Grassmann manifolds, Dokl. Akad. Nauk SSSR 177, No. 4 (1967), 1504–1507.

  33. A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev, Integrals and series: elementary functions, Gordon and Breach Sci. Publ., New York-London, 1986.

  34. J. G. Ratcliffe, Foundations of hyperbolic manifolds, Second ed., Springer, 2006.

  35. F. Richter, On the \(k\)-dimensional Radon-transform of rapidly decreasing functions, Lect. Notes in Math., 1209, 243–258, Springer, Berlin, 1986.

  36. B. Rubin, Inversion formulas for the spherical Radon transform and the generalized cosine transform, Adv. in Appl. Math. 29 (2002), 471–497.

  37. B. Rubin, Radon, cosine, and sine transforms on real hyperbolic space, Adv. in Math. 170 (2002), 206–223.

  38. B. Rubin, Reconstruction of functions from their integrals over \(k\)-dimensional planes, Israel J. of Math. 141 (2004), 93–117.

  39. B. Rubin, Radon transforms on affine Grassmannians, Trans. Amer. Math. Soc. 356 (2004), 5045–5070.

  40. B. Rubin, On the Funk-Radon-Helgason inversion method in integral geometry, Contemp. Math. 599 (2013), 175–198.

  41. B. Rubin, Introduction to Radon transforms (with elements of fractional calculus and harmonic analysis), Encyclopedia of Mathematics and Its Applications, 160, Cambridge University Press, 2015.

  42. B. Rubin, The \(\lambda\)-Cosine Transforms, Differential Operators, and Funk Transforms on Stiefel and Grassmann Manifolds, Advances in Math. 392(2):108022 https://doi.org/10.1016/j.aim.2021.108022.

  43. B. Rubin, On the spherical slice transform, Analysis and Applications. (Singap.) 20 (2022), no. 3, 483–497.

  44. B. Rubin, Y. Wang, On Radon transforms between lines and hyperplanes, Internat. J. Math. 28 (13) (2017), 1750093, 18 pp.

  45. B. Rubin, Y. Wang, New inversion formulas for Radon transforms on affine Grassmannians, J. Funct. Anal. 274 (2018), 2792–2817.

  46. B. Rubin, Y. Wang, Riesz potentials and orthogonal Radon transforms on affine Grassmannians, Fract. Calc. Appl. Anal. 24 (2) (2021), 376–392.

  47. S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives. Theory and applications, Gordon and Breach Sc. Publ., New York, 1993.

  48. H. Schlichtkrull, Hyperfunctions and harmonic analysis on Symmetric Spaces, Progr. Math. 49, Birkhäuser, Boston, 1994.

  49. E. M. Stein, G. Weiss, Generalization of the Cauchy-Riemann equations and representations of the rotation group, Amer. J. Math. 90 (1968) 163–196.

  50. R. S. Strichartz, The explicit Fourier decomposition of \(L^2(SO(n)/SO(n-m))\), Canad. J. Math. 27 (1975), 294–310.

  51. R. S. Strichartz, Bochner identities for Fourier transforms, Trans. Amer. Math. Soc. 228 (1977), 307–327.

  52. R. S. Strichartz, \(L^p\)-estimates for Radon transforms in Euclidean and non-euclidean spaces, Duke Math. J. 48 (1981), 699–727.

  53. R. S. Strichartz, Harmonic analysis on Grassmannian bundles, Trans. Amer. Math. Soc. 296 (1986), 387–409.

  54. N. Ja. Vilenkin, A. V. Klimyk, Representations of Lie groups and special functions, Vol. 2, Kluwer Academic publishers, Dordrecht, 1993.

  55. H. Weyl, The classical groups, Princeton, 1939.

  56. Yuan Xu, Reconstruction from Radon projections and orthogonal expansion on a ball, J. Phys. A. 40 (2007), 7239–7253.

  57. Genkai Zhang, Radon transform on real, complex, and quaternionic Grassmannians, Duke Math. J. 138 (2007), 137–160.

  58. Genkai Zhang, Radon, cosine and sine transforms on Grassmannian manifolds, Int. Math. Res. Not. IMRN 10 (2009), 1743–1772.

Download references

Acknowledgements

I am grateful to the referee for his thoughtful reading of the manuscript and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Rubin.

Additional information

To the memory of Professor Nikolai Karapetovich Karapetiants on the occasion of his 80th birthday.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

8. Appendix. The Erdélyi–Kober-type fractional integrals

8. Appendix. The Erdélyi–Kober-type fractional integrals

We recall some elementary facts from Fractional Calculus [41, Section “2.6.2”], [47]. The following Erdélyi–Kober-type fractional integrals on \(\mathbb {R}_+ =(0, \infty )\) of order \(\alpha >0\) arise in numerous integral-geometric considerations:

$$\begin{aligned} (I^{\alpha }_{+, 2} f)(t)= & {} \frac{2}{\Gamma (\alpha )}\int \limits _{0}^{t} (t^{2} -r^{2})^{\alpha -1}f (r) \, r\, dr,\\ (I^{\alpha }_{-, 2} f)(t)= & {} \frac{2}{\Gamma (\alpha )}\int \limits _{t}^{\infty }(r^{2} - t^{2})^{\alpha -1}f (r) \, r\, dr. \end{aligned}$$

Lemma 8.1

[41, p. 65] Let \(\alpha >0\).

(i) The integral \((I^{\alpha }_{+, 2} f)(t)\) is absolutely convergent for almost all \(t>0\) whenever \(r\mapsto rf(r)\) is a locally integrable function on \(\mathbb {R}_{+}\).

(ii) If

$$\begin{aligned} \int \limits _{a}^{\infty }|f(r)|\, r^{2\alpha -1}\, dr <\infty ,\qquad a>0, \end{aligned}$$
(8.1)

then \((I^{\alpha }_{-, 2} f)(t)\) is finite for almost all \(t>a\). If f is non-negative, locally integrable on \([a,\infty )\), and (8.1) fails, then \((I^{\alpha }_{-, 2} f)(t)=\infty\) for every \(t\ge a\).

The corresponding Erdélyi–Kober fractional derivatives are defined as the left inverses \({\mathcal D^{\alpha }_{\pm , 2} = (I^{\alpha }_{\pm , 2})^{-1}}\). For example, if \(\alpha = m + \alpha _{0}\), \(0 \le \alpha _{0} < 1\), \(m = \lfloor \alpha \rfloor\), the integer part of \(\alpha\), then, formally,

$$\begin{aligned} \mathcal D^{\alpha }_{\pm , 2} \varphi =(\pm D)^{m +1}\, I^{1 - \alpha _{0}}_{ \pm , 2}\varphi , \qquad D=\frac{1}{2t}\,\frac{d}{dt}. \end{aligned}$$
(8.2)

More precisely, the following statements hold.

Theorem 8.2

(cf. [41, formula (2.6.22)]) Let \(\varphi = I^{\alpha }_{+, 2} f\), where rf(r) is locally integrable on \(\mathbb {R}_{+}\). Then, \(f(t)= (\mathcal D^{\alpha }_{+, 2} \varphi )(t)\) for almost all \(t\in \mathbb {R}_{+}\), as in (8.2).

Theorem 8.3

[41, Theorem 2.44] If f satisfies (8.1) for every \(a>0\) and \(\varphi \!= \!I^{\alpha }_{-, 2} f\), then \(f(t)= (\mathcal D^{\alpha }_{-, 2} \varphi )(t)\) for almost all \(t\in \mathbb {R}_{+}\), where \(\mathcal D^{\alpha }_{-, 2} \varphi\) can be represented as follows.

(i) If \(\alpha =m\) is an integer, then

$$\begin{aligned} \mathcal D^{\alpha }_{-, 2} \varphi =(- D)^{m} \varphi , \qquad D=\frac{1}{2t}\,\frac{d}{dt}. \end{aligned}$$
(8.3)

(ii) If \(\alpha = m +\alpha _{0}, \; m = \lfloor \alpha \rfloor , \; 0< \alpha _{0} <1\), then

$$\begin{aligned} \mathcal D^{\alpha }_{-, 2} \varphi = t^{2(1-\alpha +m)} (- D)^{m +1} t^{2\alpha }\psi , \quad \psi =I^{1-\alpha +m}_{-,2} \,t^{-2m-2}\, \varphi . \end{aligned}$$
(8.4)

In particular, for \(\alpha =k/2\), k odd,

$$\begin{aligned} \mathcal D^{k/2}_{-, 2} \varphi = t\,(- D)^{(k+1)/2} t^{k}I^{1/2}_{-,2} \,t^{-k-1}\,\varphi . \end{aligned}$$
(8.5)

In the above theorem, powers of t are interpreted as the corresponding multiplication operators.

Theorems 8.2 and 8.3 can be used for explicit inversion of diverse Radon-like transforms of radial (or zonal) functions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubin, B. HIGHER-RANK RADON TRANSFORMS ON CONSTANT CURVATURE SPACES. J Math Sci 266, 148–195 (2022). https://doi.org/10.1007/s10958-022-05877-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-022-05877-x

Keywords

Mathematics Subject Classification

Navigation