Skip to main content
Log in

Mechanism of Appearing Complex Relaxation Oscillations in a System of Two Synaptically Coupled Neurons

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We consider a system of two specially coupled differential-difference equations with delay in the coupling link. We establish that the system has a set of coexisting orbitally asymptotically stable solutions with the total number 2n, n ∈ ℕ, of bursts in the period; moreover, one of the oscillators has m bursts and the other has 2n − m bursts, m = 1, . . . , 2n−1. From the results obtained it follows that an additional delay leads to the appearance of coexisting attractors in the system with a given number of bursts in the period. Bibliography: 20 titles. Illustrations: 2 figures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. I. Rabinovich, P. Varona, A. I. Selverston, and H. D. I. Abarbanel, “Dynamical principles in neuroscience,” Rev. Mod. Phys. 78, No. 4, 1213–1265 (2006).

    Article  Google Scholar 

  2. S. Coombes and P. C. Bressloff, Bursting. The Genesis of Rhythm in the Nervous System, World Scientific, Hackensack, NJ (2005).

  3. G. B. Ermentrout and N. Kopell, “Parabolic bursting in an excitable system coupled with a slow oscillation,” SIAM J. Appl. Math. 46, No. 2, 233–253 (1986).

    Article  MathSciNet  Google Scholar 

  4. D. Somers and N. Kopell, “Rapid synchronization through fast threshold modulation,” Biol. Cybern. 68, 393–407 (1993).

    Article  Google Scholar 

  5. N. Kopell and D. Somers, “Anti-phase solutions in relaxation oscillators coupled through excitatory interactions,” J. Math. Biol. 33, No. 3, 261–280 (1995).

    Article  MathSciNet  Google Scholar 

  6. S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov, “On a method for mathematical modeling of chemical synapses,” Differ. Equ. 49, No. 10, 1193–1210 (2013).

    Article  MathSciNet  Google Scholar 

  7. N. Burić and D. Todorović, “Bifurcations due to small time-lag in coupled excitable systems,” Int. J. Bifurcations Chaos Appl. Sci. Eng. 15, No. 5, 1775–1785 (2005).

    Article  MathSciNet  Google Scholar 

  8. S. A. Campbell, Y. Yuan, and S. D. Bungay, “Equivariant Hopf bifurcation in a ring of identical cells with delayed coupling,” Nonlinearity 18, No. 6, 2827–2846 (2005).

    Article  MathSciNet  Google Scholar 

  9. S. Campbell, I. Ncube, and J. Wu, “Multistability and stable asynchronous periodic oscillations in a multiple-delayed neural system,” Physica D 214, No. 2, 101–119 (2006).

    Article  MathSciNet  Google Scholar 

  10. A. Yu. Kolesov, E. F. Mishchenko, and N. Kh. Rozov, “A modification of Hutchinsons’s equation,” Comput. Math. Math. Phys. 50, No. 12, 1990–2002 (2010).

    Article  MathSciNet  Google Scholar 

  11. S. Kashchenko, Models of Wave Memory, Springer, Cham (2015).

  12. A. Yu. Kolesov, E. F. Mishchenko, and N. Kh. Rozov, “A relay with delay and its C1-approximation,” Proc. Steklov Inst. Math. 216, 119–146 (1997).

    Google Scholar 

  13. S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov, “Self-excited relaxation oscillations in networks of impulse neurons,” Russ. Math. Surv. 70, No. 3, 383–452 (2015).

    Article  Google Scholar 

  14. S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov, “Discrete autowaves in neural systems,” Comput. Math. Math. Phys. 52, No. 5, 702–719 (2012).

    Article  MathSciNet  Google Scholar 

  15. M. M. Preobrazhenskaya, “Relaxation cycles in a model of synaptically interacting oscillators,” Autom. Control Comput. Sci. 51, No. 7, 783–797 (2017).

    Article  MathSciNet  Google Scholar 

  16. M. M. Preobrazhenskaya, “The impulse-refractive mode in a neural network with ring synaptic interaction,” Autom. Control Comput. Sci. 52, No. 7, 777–789 (2018).

    Article  Google Scholar 

  17. M. M. Preobrazhenskaya, “Multipliers of an antiphase solution in a system of two coupled nonlinear relaxation oscillators,” J. Phys., Conf. Ser. 1163, Paper 012062 (2019).

  18. S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov, “Modeling the bursting effect in neuron systems,” Math. Notes 93, No. 5, 676–690 (2013).

    Article  MathSciNet  Google Scholar 

  19. A. B. Vasil’eva and V. F. Butuzov, Asymptotic Methods in the Theory of Singular Perturbations [in Russian], Vysshaya Shkola, Moscow (1990).

  20. S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov, “Stable relaxation cycle in a bilocal neuron model,” Differ. Equ. 54, No. 10, 1285–1309 (2018).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Glyzin.

Additional information

Translated from Problemy Matematicheskogo Analiza 103, 2020, pp. 71-84.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glyzin, S.D., Preobrazhenskaya, M.M. Mechanism of Appearing Complex Relaxation Oscillations in a System of Two Synaptically Coupled Neurons. J Math Sci 249, 894–910 (2020). https://doi.org/10.1007/s10958-020-04982-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-020-04982-z

Navigation