Skip to main content
Log in

Well-Posedness of the Lord–Shulman Variational Problem of Thermopiezoelectricity

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

On the basis of the initial-boundary-value Lord–Shulman problem of thermopiezoelectricity, we formulate the corresponding variational problem in terms of the vector of elastic displacements, electric potential, temperature increment, and the vector of heat fluxes. By using the energy balance equation of the variational problem, we establish sufficient conditions for the regularity of input data of the problem and prove the uniqueness of its solution. To prove the existence of the general solution to the problem, we use the procedure of Galerkin semidiscretization in spatial variables and show that the limit of the sequence of its approximations is a solution of the variational problem of Lord–Shulman thermopiezoelectricity. This fact allows us to construct a reasonable procedure for the determination of approximate solutions to this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Nowacki, Effekty Elektro-Magnetyczne w Stalych Ciałach Odkształcalnych [in Polish], Państwowe Wyd-wo Nauk., Warszawa (1983).

    Google Scholar 

  2. Ya. S. Podstrigach and Yu. M. Kolyano, Generalized Thermomechanics [in Russian], Naukova Dumka, Kiev (1976).

    Google Scholar 

  3. V. Stelmashchuk and H. Shynkarenko, “Numerical simulation of the dynamic problems of pyroelectricity,” Visn. L’viv. Univ., Ser. Prykl. Mat. Inform., Issue 22, 92–107 (2014).

    Google Scholar 

  4. O. Fundak and H. Shynkarenko, “Barycentric representation of basis functions in the spaces of Raviart–Thomas approximations,” Visn. L’viv. Univ., Ser. Prykl. Mat. Inform., Issue 7, 102–114 (2003).

    MATH  Google Scholar 

  5. H. A. Shynkarenko, “Projection-grid approximations for the variational problems of pyroelectricity. I. Statement of the problem and analysis of steady-state forced vibrations,” Differents. Uravn., 29, No. 7, 1252–1260 (1993).

    Google Scholar 

  6. H. A. Shynkarenko, “Projection-grid approximations for variational problems of pyroelectricity. IІ. Discretization and solvability of nonstationary problems,” Differents. Uravn., 30, No. 2, 317–326 (1994).

    Google Scholar 

  7. I. A. Chyr and H. A. Shynkarenko, “Well-posedness of the Green–Lindsay variational problem of dynamic thermoelasticity,” Mat. Met. Fiz.-Mekh. Polya, 58, No. 3, 15–25 (2015); English translation: J. Math. Sci., 226, No. 1, 11–27 (2017).

  8. M. Aouadi, “Generalized theory of thermoelastic diffusion for anisotropic media,” J. Therm. Stresses, 31, No. 3, 270–285 (2008).

    Article  Google Scholar 

  9. M. H. Babaei and Z. T. Chen, “Transient thermopiezoelectric response of a one-dimensional functionally graded piezoelectric medium to a moving heat source,” Arch. Appl. Mech., 80, No. 7, 803–813 (2010).

    Article  MATH  Google Scholar 

  10. D. S. Chandrasekharaiah, “A generalized linear thermoelasticity theory for piezoelectric media,” Acta Mech., 71, No. 1-4, 39–49 (1988).

    Article  MATH  Google Scholar 

  11. D. S. Chandrasekharaiah, “Hyperbolic thermoelasticity: a review of recent literature,” Appl. Mech. Rev., 51, No. 12, 705–729 (1998).

    Article  Google Scholar 

  12. A. S. El-Karamany and M. A. Ezzat, “Propagation of discontinuities in thermopiezoelectric rod,” J. Therm. Stresses, 28, No. 10, 997–1030 (2005).

    Article  Google Scholar 

  13. R. B. Hetnarski and J. Ignaczak, “Generalized thermoelasticity,” J. Therm. Stresses, 22, No. 4-5, 451–476 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Ignaczak and M. Ostoja-Starzewski, Thermoelasticity with Finite Wave Speeds, Oxford Univ. Press, Oxford (2010).

    MATH  Google Scholar 

  15. J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Vol. I, Springer-Verlag, Berlin etc. (1972); http://www.springer.com/br/book/9783642651632.

  16. H. W. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solids, 15, No. 5, 299–309 (1967).

    Article  MATH  Google Scholar 

  17. R. D. Mindlin, “On the equations of motion of piezoelectric crystals,” in: Problems of Continuum Mechanics: Contributions in Honor of the 70th Birthday of Academician N. I. Muskhelishvili, SIAM, Philadelphia, 282–290 (1961).

  18. W. Nowacki, “Some general theorems of thermopiezoelectricity,” J. Therm. Stresses, 1, No. 2, 171–182 (1978).

    Article  Google Scholar 

  19. H. H. Sherief and A. M. Abd El-Latief, “Boundary element method in generalized thermoelasticity,” in: Encyclopedia of Thermal Stresses, Ed. R. B. Hetnarski, Springer, Dordrecht etc., Vol. 1, 407–415 (2014).

  20. V. V. Stelmashchuk and H. A. Shynkarenko, “Numerical modeling of thermopiezoelectricity steady state forced vibrations problem using adaptive finite element method,” in: Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues, Eds. M. Kleiber et al. (Proc. 3rd Polish Congress of Mechanics (PCM) and 21st Int. Conf. on Computer Methods in Mechanics (CMM), Gdansk, Poland, 8-11 September 2015.), CRC Press, London (2016), pp. 547–550.

  21. V. V. Stelmashchuk and H. A. Shynkarenko, “Numerical solution of Lord–Shulman thermopiezoelectricity forced vibrations problem,” Zh. Obchysl. Prykl. Matem., No. 2, 106–119 (2016); http://nbuv.gov.ua/UJRN/jopm_2016_2_11.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Matematychni Metody ta Fizyko-Mekhanichni Polya, Vol. 59, No. 4, pp. 116–127, October–December, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stelmashchuk, V.V., Shynkarenko, H.A. Well-Posedness of the Lord–Shulman Variational Problem of Thermopiezoelectricity. J Math Sci 238, 139–153 (2019). https://doi.org/10.1007/s10958-019-04224-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-019-04224-x

Navigation