Skip to main content
Log in

Perturbation Bounds for Markov Chains with General State Space

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The aim of this paper is to investigate the stability of Markov chains with general state space. We present new conditions for the strong stability of Markov chains after a small perturbation of their transition kernels. Also, we obtain perturbation bounds with respect to different quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Aïssani and N.V. Kartashov, “Ergodicity and stability of Markov chains with respect to operator topology in the space of transition kernels,” Dokl. Akad. Nauk. Ukr. SSR, 11, 3–5 (1983).

    MATH  Google Scholar 

  2. D. Aïssani and N.V. Kartashov, “Strong stability of the embedded Markov chain in an M/G/1 system,” Prob. Theor. Math. Stat., 29, 1–5 (1984).

    Google Scholar 

  3. A. A. Borovkov, Probability Processes in Queuing Theory, Fizmatlit, Moskow (1972).

    Google Scholar 

  4. S. L. Campbell and C.D. Meyer, Generalized Inverses of Linear Transformations, Dover, New York (1991).

    MATH  Google Scholar 

  5. G. E. Cho and C.D. Meyer, “Comparison of perturbation bounds for the stationary distribution of a Markov chain,” Linear Algebra Appl., 335, 137–150 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  6. M. P. Drazin, “Pseudoinverse in associative rings and semigroups,” Am. Math. Mont., 65, 506–514 (1958).

    Article  MATH  Google Scholar 

  7. C. W. Groetsch, Generalized Inverses of Linear Operators, Marcel Dekker, New York (1977).

    MATH  Google Scholar 

  8. V. V. Kalashnikov, “Analysis of ergodicity of queueing systems by means of the direct method of Lyapunov,” Avtomat. Telemekh., 4, 46–54 (1971).

    MathSciNet  Google Scholar 

  9. N. V. Kartashov, “Strong stability of Markov chains,” J. Sov. Math., 34, 1493–1498 (1986).

    Article  MATH  Google Scholar 

  10. N. V. Kartashov, “Criteria for ergodicity and stability for Markov chains with common phase space,” Theor. Probab. Math. Stat., 30, 71–89 (1985).

    MATH  Google Scholar 

  11. N. V. Kartashov, “Inequalities in theorems of ergodicity and stability for Markov chains with common phase space I,” Theor. Probab. Appl., 30, No. 2, 23–35 (1985).

    Google Scholar 

  12. N. V. Kartashov, Strong Stable Markov Chains. VSP, Utrecht (1996).

    MATH  Google Scholar 

  13. T. Kato, Perturbation Theory for Linear Operators, Springer–Verlag, Berlin (1976).

    MATH  Google Scholar 

  14. J. G. Kemeny and J. L. Snell, Finite Markov Chains, Van Nostrand, New York (1966).

    MATH  Google Scholar 

  15. J.G. Kemeny, J. L. Snell, and A.W. Knapp, Denumerable Markov Chains, Van Nostrand, New York (1966).

    MATH  Google Scholar 

  16. S.P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, Springer–Verlag, London (1993).

    Book  MATH  Google Scholar 

  17. C.D. Meyer, “The condition of a finite Markov chain and perturbation bounds for the limiting probabilities,” SIAM J. Algebraic Discrete Meth., 1, No. 3, 273–283 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Rabta and D. Aïssani, “Strong stability in an (R, s, S) inventory model,” Int. J. Prod. Econ., 97, No. 2, 159–171 (2005).

    Article  MATH  Google Scholar 

  19. B. Rabta and D. Aïssani, “Strong stability and perturbation bounds for Markov chains with discrete state space,” Lin. Algebra Appl., 428, No. 8–9, 1921–1927 (2008).

    Article  MATH  Google Scholar 

  20. S.T. Rachev, Probability Metrics and the Stability of Stochastic Models, Wiley, New York (1989).

    Google Scholar 

  21. H. J. Rossberg, “Über die Verteilung von Wartezeiten,” Math. Nachr., 1/2, No. 30, 1–16 (1965).

    Article  MATH  Google Scholar 

  22. P. Schweitzer, “Perturbation theory and finite Markov chains,” J. Appl. Probab., 5, 401–413 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  23. E. Seneta, “Perturbation of the stationary distribution measured by ergodicity coefficients,” Adv. Appl. Probab., 20, No. 1, 228–230 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  24. E. Seneta, “Sensitivity analysis, ergodicity coefficients, and rank-one updates for finite Markov chains,” in: Numerical Solution of Markov Chains, W. J. Stewart (ed.), Marcel Dekker, New York (1991), pp. 121–129.

    Google Scholar 

  25. D. Stoyan, “Ein Steitigkeitssatz für Einlinge Watermodelle der Bedienungstheorie,” Math. Oper. Forsch. Stat., 3, No. 2, 103–111 (1977).

    Article  Google Scholar 

  26. D. Stoyan, Comparison Methods for Queues and Other Stochastic Models, Daley, New York (1983).

    MATH  Google Scholar 

  27. V. M. Zolotarev, “On the continuity of stochastic sequences generated by recurrent processes,” Theor. Probab. Appl., 20, No. 4, 819–832 (1975).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Rabta.

Additional information

Proceedings of the XVIII International Seminar on Stability Problems for Stochastic Models, Zakopane, Poland, May 31–June 5, 2009

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabta, B., Aïssani, D. Perturbation Bounds for Markov Chains with General State Space. J Math Sci 228, 510–521 (2018). https://doi.org/10.1007/s10958-017-3640-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-017-3640-9

Navigation