Skip to main content
Log in

Karyon Expansions of Pisot Numbers in Multidimensional Continued Fractions

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Best simultaneous Diophantine approximations of Pisot numbers are obtained. To this end, the karyon approximation method is used. Approximation of Littlewood–Pisot numbers is investigated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. G. Zhuravlev, “Differentiation of induced toric tilings and multidimensional approximation of algebraic numbers,” Zap. Nauchn. Semin. POMI, 445, 33–92 (2016).

    MathSciNet  Google Scholar 

  2. V. G. Zhuravlev, “Two-dimensional approximations by the method of dividing toric tilings,” Zap. Nauchn. Semin. POMI, 440, 81–98 (2015).

    Google Scholar 

  3. V. G. Zhuravlev, “Dividing toric tilings and bounded remainder sets,” Zap. Nauchn. Semin. POMI, 440, 99–122 (2015).

    Google Scholar 

  4. V. G. Zhuravlev, “Periodic karyon continued fraction expansions of cubic irrationalities,” Sovrem. Probl. Matem. (2016), in print.

  5. Z. Coelho, A. Lopes, and L. F. Da Rocha, “Absolutely continuous invariant measures for a class of affine interval exchange maps,” Proc. Amer. Math. Soc., 123, No. 11, 3533–3542 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  6. V. G. Zhuravlev and A. V. Shutov, “Derivaties of circle rotations and similarity of orbits,” Max Planck Institut für Math., Preprint Series, 62, 1–11 (2004).

  7. M. Furukado, Sh. Ito, A. Saito, J. Tamura, and Sh. Yasutomi, “A new multidimensional slow continued fraction algorithm and stepped surface,” Exper. Math., 23, No. 4, 390–410 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Abrate, S. Barbero, U. Cerruti, and N. Murru, “Periodic representations for cubic irrationalities,” Fibonacci Quart., 50, No. 3, 252–264 (2012).

    MathSciNet  MATH  Google Scholar 

  9. N. Murru, “On the periodic writing of cubic irrationals and a generalization of Rédei functions,” Int. J. Number Theory, 11, 779–799 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  10. Sh. Ito, J. Fujii, H. Higashino, and Sh. Yasutomi, “On simultaneous approximation to (α, α 2) with α 3 + kα −1 = 0,” J. Number Theory, 99, 255–283 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  11. Q. Wang, K. Wang, and Z. Dai, “On optimal simultaneous rational approximation to (ω,ω 2)τ with ω being some kind of cubic algebraic function,” J. Approx. Theory, 148, 194–210 (2007).

    Article  MathSciNet  Google Scholar 

  12. P. Hubert and A. Messaoudi, “Best simultaneous Diophantine approximations of Pisot numbers and Rauzy fractals,” Acta Arithm., 124, No. 1, 1–5 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  13. N. Chevallier, “Best simultaneous Diophantine approximations of some cubic numbers,” J. Théor. Nombres Bordeaux, 14, No. 2, 403–414 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  14. N. Chevallier, “Best simultaneous Diophantine approximations and multidimensional continued fraction expansions,” Moscow J. Comb. Number Theory, 3, No. 1, 3–56 (2013).

    MathSciNet  MATH  Google Scholar 

  15. A. Ya. Khinchin, Continued Fractions [in Russian], 4th ed., Moscow (1978).

  16. V. G. Zhuravlev, “Periodic karyon expansions of algebraic units in multidimensional continued fractions,” Zap. Nauchn. Semin. POMI, 449, 84–129 (2016).

    Google Scholar 

  17. J. Lagarias, “Best simultaneous Diophantine approximations. I. Growth rates of best approximation denomimators,” Trans. Amer. Math. Soc., 272, 545–554 (1982).

    MathSciNet  MATH  Google Scholar 

  18. G. Kassels, Introduction to the Theory of Diophantine Approximations [Russian translation], Moscow (1961).

  19. E. S. Fedorov, The Elements of the Study of Figures [in Russian], Moscow (1953).

  20. G. F. Voronoi, Collected Works [in Russian], Vol. 2, Kiev (1952).

  21. V. G. Zhuravlev, “Exchanged toric developments and bounded remainder sets,” Zap. Nauchn. Semin. POMI, 392, 95–145 (2011).

    Google Scholar 

  22. V. G. Zhuravlev, “Bounded remainder polyhedra,” Sovrem. Probl. Matem., 16, 82–102 (2012).

    Article  Google Scholar 

  23. K. Mukunda, “Littlewood Pisot numbers,” J. Number Theory, 117, 106–121 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Rauzy, “Nombres algébriques et substitutions,” Bull. Soc. Math. France, 110, 147–178 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  25. V. G. Zhuravlev, “Rauzy tilings and bounded remainder sets,” Zap. Nauchn. Semin. POMI, 322, 83–106 (2005).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Zhuravlev.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 449, 2016, pp. 168–195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuravlev, V.G. Karyon Expansions of Pisot Numbers in Multidimensional Continued Fractions. J Math Sci 225, 950–968 (2017). https://doi.org/10.1007/s10958-017-3507-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-017-3507-0

Navigation